Proactive Content Caching at Self-Driving Car Using Federated Learning with Edge Cloud

Subina Khanal, K. Thar, M. Hossain, E. Huh
{"title":"Proactive Content Caching at Self-Driving Car Using Federated Learning with Edge Cloud","authors":"Subina Khanal, K. Thar, M. Hossain, E. Huh","doi":"10.1109/ICUFN49451.2021.9528638","DOIUrl":null,"url":null,"abstract":"Proactive content caching in self-driving cars poses several challenges, particularly because of the dynamic nature of content popularity, heterogeneity in user preferences, and privacy issues for data sharing. To tackle these issues, in this paper, we study the significance of proactive content caching strategy in self-driving cars for optimizing content retrieval cost and quality-of-experience (QoE) with the edge cloud infrastructure. To that end, we propose a low-complexity content popularity prediction mechanism in a federated setting where we extract local content popularity patterns in the self-driving cars using long short-term memory (LSTM)-based prediction mechanism. Then, we leverage the privacy-preserving distributed model training paradigm of Federated Learning (FL) to create a global model by applying the Federated Averaging (FedAvg) algorithm on local LSTM models to create a regional content popularity prediction model. With extensive simulations on real-world datasets, we show the obtained global model helps to improve the local cache hit ratio, cache space utilization, and correspondingly minimize latency overhead at the self-driving cars.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Proactive content caching in self-driving cars poses several challenges, particularly because of the dynamic nature of content popularity, heterogeneity in user preferences, and privacy issues for data sharing. To tackle these issues, in this paper, we study the significance of proactive content caching strategy in self-driving cars for optimizing content retrieval cost and quality-of-experience (QoE) with the edge cloud infrastructure. To that end, we propose a low-complexity content popularity prediction mechanism in a federated setting where we extract local content popularity patterns in the self-driving cars using long short-term memory (LSTM)-based prediction mechanism. Then, we leverage the privacy-preserving distributed model training paradigm of Federated Learning (FL) to create a global model by applying the Federated Averaging (FedAvg) algorithm on local LSTM models to create a regional content popularity prediction model. With extensive simulations on real-world datasets, we show the obtained global model helps to improve the local cache hit ratio, cache space utilization, and correspondingly minimize latency overhead at the self-driving cars.
使用边缘云联合学习的自动驾驶汽车的主动内容缓存
自动驾驶汽车的主动内容缓存带来了一些挑战,特别是因为内容受欢迎程度的动态性、用户偏好的异质性以及数据共享的隐私问题。为了解决这些问题,本文研究了主动内容缓存策略在自动驾驶汽车中利用边缘云基础设施优化内容检索成本和体验质量(QoE)的意义。为此,我们提出了一种在联邦环境下的低复杂度内容流行度预测机制,我们使用基于长短期记忆(LSTM)的预测机制提取自动驾驶汽车中的本地内容流行度模式。然后,我们利用联邦学习(FL)的隐私保护分布式模型训练范式,通过在局部LSTM模型上应用联邦平均(FedAvg)算法创建区域内容流行度预测模型来创建全局模型。通过对真实世界数据集的广泛模拟,我们证明了获得的全局模型有助于提高本地缓存命中率,缓存空间利用率,并相应地最小化自动驾驶汽车的延迟开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信