George Panteras, Xu Lu, A. Croitoru, A. Crooks, A. Stefanidis
{"title":"Accuracy Of User-Contributed Image Tagging In Flickr: A Natural Disaster Case Study","authors":"George Panteras, Xu Lu, A. Croitoru, A. Crooks, A. Stefanidis","doi":"10.1145/2930971.2930986","DOIUrl":null,"url":null,"abstract":"Social media platforms have become extremely popular during the past few years, presenting an alternate, and often preferred, avenue for information dissemination within massive global communities. Such user-generated multimedia content is emerging as a critical source of information for a variety of applications, and particularly during times of crisis. In order to fully explore this potential, there is a need to better assess, and improve when possible, the accuracy of such information. This paper addresses this issue by focusing in particular on user-contributed image tagging in Flickr. We use as case study a natural disaster event (wildfire), and assess the reliability of user-generated tags. Furthermore, we compare these data to the results of a content-based annotation approach in order to assess the potential performance of an alternative, user-independent, automated approach to annotate such imagery. Our results show that Flickr user annotations can be considered quite reliable (at the level of ~50%), and that using a spatially distributed training dataset for our content-based image retrieval (CBIR) annotation process improves the performance of the content-based image labeling (to the level of ~75%).","PeriodicalId":227482,"journal":{"name":"Proceedings of the 7th 2016 International Conference on Social Media & Society","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th 2016 International Conference on Social Media & Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930971.2930986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Social media platforms have become extremely popular during the past few years, presenting an alternate, and often preferred, avenue for information dissemination within massive global communities. Such user-generated multimedia content is emerging as a critical source of information for a variety of applications, and particularly during times of crisis. In order to fully explore this potential, there is a need to better assess, and improve when possible, the accuracy of such information. This paper addresses this issue by focusing in particular on user-contributed image tagging in Flickr. We use as case study a natural disaster event (wildfire), and assess the reliability of user-generated tags. Furthermore, we compare these data to the results of a content-based annotation approach in order to assess the potential performance of an alternative, user-independent, automated approach to annotate such imagery. Our results show that Flickr user annotations can be considered quite reliable (at the level of ~50%), and that using a spatially distributed training dataset for our content-based image retrieval (CBIR) annotation process improves the performance of the content-based image labeling (to the level of ~75%).