DSP-Based Fuzzy Neural Network PI/PD-Like Fuzzy Controller for Motion Controls and Drives

A. Rubaai, P. Young
{"title":"DSP-Based Fuzzy Neural Network PI/PD-Like Fuzzy Controller for Motion Controls and Drives","authors":"A. Rubaai, P. Young","doi":"10.1109/IAS.2010.5614081","DOIUrl":null,"url":null,"abstract":"In this paper, an on-line trained fuzzy neural-network PI/PD controller is developed and implemented for speed trajectory tracking of a brushless drive system. The fuzzy neural network (FNN) structure is basically composed of two parallel fuzzy-neural PI/PD-like fuzzy controllers. Each of the fuzzy-neural PI/PD controllers is a four layer control network. Extended Kalman Filter (EKF) is used to adaptively train each FNN parameters on-line. The on-line learning mechanism modifies the weights and the membership functions of the parallel FNN PI/PD-like fuzzy controllers to adaptively control the rotor speed of the drive system. Thus, the proposed architecture-based EKF presents an alternative to control schemes employed so far. The entire system is designed and implemented in the laboratory using a hardware setup. The real-time laboratory implementation is based on a dSPACE DS1104 DSP and MATLAB/Simulink environment. Experimental results have shown that the proposed controller adaptively and robustly responds to a wide range of operating conditions.","PeriodicalId":317643,"journal":{"name":"2010 IEEE Industry Applications Society Annual Meeting","volume":"120 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2010.5614081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, an on-line trained fuzzy neural-network PI/PD controller is developed and implemented for speed trajectory tracking of a brushless drive system. The fuzzy neural network (FNN) structure is basically composed of two parallel fuzzy-neural PI/PD-like fuzzy controllers. Each of the fuzzy-neural PI/PD controllers is a four layer control network. Extended Kalman Filter (EKF) is used to adaptively train each FNN parameters on-line. The on-line learning mechanism modifies the weights and the membership functions of the parallel FNN PI/PD-like fuzzy controllers to adaptively control the rotor speed of the drive system. Thus, the proposed architecture-based EKF presents an alternative to control schemes employed so far. The entire system is designed and implemented in the laboratory using a hardware setup. The real-time laboratory implementation is based on a dSPACE DS1104 DSP and MATLAB/Simulink environment. Experimental results have shown that the proposed controller adaptively and robustly responds to a wide range of operating conditions.
基于dsp模糊神经网络的运动控制与驱动类PI/ pd模糊控制器
本文开发并实现了一种在线训练模糊神经网络PI/PD控制器,用于无刷驱动系统的速度轨迹跟踪。模糊神经网络(FNN)结构基本上由两个并行的模糊神经类PI/ pd模糊控制器组成。每个模糊神经PI/PD控制器都是一个四层控制网络。扩展卡尔曼滤波(EKF)用于在线自适应训练FNN各参数。在线学习机制通过修改并联FNN类PI/ pd模糊控制器的权值和隶属函数,实现对驱动系统转子转速的自适应控制。因此,所提出的基于体系结构的EKF提供了迄今为止所采用的控制方案的替代方案。整个系统的设计和实现在实验室中使用硬件设置。实时实验室的实现是基于dSPACE DS1104 DSP和MATLAB/Simulink环境。实验结果表明,所提出的控制器能够自适应和鲁棒地响应广泛的操作条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信