Double K-means methodology to determine Grey Classes in electric frequency variation

Marcos Sacasqui
{"title":"Double K-means methodology to determine Grey Classes in electric frequency variation","authors":"Marcos Sacasqui","doi":"10.1109/INTERCON.2018.8526427","DOIUrl":null,"url":null,"abstract":"This article shows how the Double K-means methodology can be used for the proper determination of grey classes over a set of electrical frequency deviation measurements. The Double K-means methodology to determine grey classes has the quality of being automated which allows the execution of its algorithm simultaneously with the input of measurements (online) or with stored measurements (offline). It is a contribution to science by the researcher as it is useful for the analysis of large amounts of oscillating data such as the electrical frequency deviation indicator and other Power Quality parameters using the Grey clustering and Entropy Weight methodology, which allows decision making or qualification of the behavior, service or phenomenon.","PeriodicalId":305576,"journal":{"name":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERCON.2018.8526427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article shows how the Double K-means methodology can be used for the proper determination of grey classes over a set of electrical frequency deviation measurements. The Double K-means methodology to determine grey classes has the quality of being automated which allows the execution of its algorithm simultaneously with the input of measurements (online) or with stored measurements (offline). It is a contribution to science by the researcher as it is useful for the analysis of large amounts of oscillating data such as the electrical frequency deviation indicator and other Power Quality parameters using the Grey clustering and Entropy Weight methodology, which allows decision making or qualification of the behavior, service or phenomenon.
确定电频率变化灰色等级的双k均值方法
本文展示了双k均值方法如何用于在一组电频率偏差测量上正确确定灰色等级。确定灰色类别的双k均值方法具有自动化的质量,允许其算法与输入测量(在线)或存储测量(离线)同时执行。这是研究人员对科学的贡献,因为它有助于分析大量振荡数据,如电气频率偏差指标和其他电能质量参数,使用灰色聚类和熵权方法,允许决策或行为,服务或现象的资格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信