The effect of earth fault current harmonics on tripping of residual current devices

S. Czapp
{"title":"The effect of earth fault current harmonics on tripping of residual current devices","authors":"S. Czapp","doi":"10.1109/ISNCC.2008.4627489","DOIUrl":null,"url":null,"abstract":"The most popular means of protection against indirect contact in low voltage systems is automatic disconnection of supply, since it is a simple and economically attractive way to achieve safety in an electrical installation. As a protective device, residual current devices (RCDs) are commonly used. In certain conditions using the RCDs is obligatory. The widespread application of static converters, especially frequency converters, results in installing RCDs in circuits where nonsinusoidal earth fault current flows. The earth fault current in the output circuit of frequency converters comprises harmonics and interharmonics, whose order mainly depends on the PWM frequency. The level of higher frequency components in the earth fault current may exceed the fundamental one. The nonsinusoidal earth fault current influences tripping of the residual current devices. In the paper, results of the theoretical analysis and the laboratory tests of residual current devices operation are presented and discussed. They prove that in some cases higher frequency components cause improper tripping of the residual current devices and a real hazard of electrocution exists.","PeriodicalId":143815,"journal":{"name":"2008 International School on Nonsinusoidal Currents and Compensation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International School on Nonsinusoidal Currents and Compensation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNCC.2008.4627489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The most popular means of protection against indirect contact in low voltage systems is automatic disconnection of supply, since it is a simple and economically attractive way to achieve safety in an electrical installation. As a protective device, residual current devices (RCDs) are commonly used. In certain conditions using the RCDs is obligatory. The widespread application of static converters, especially frequency converters, results in installing RCDs in circuits where nonsinusoidal earth fault current flows. The earth fault current in the output circuit of frequency converters comprises harmonics and interharmonics, whose order mainly depends on the PWM frequency. The level of higher frequency components in the earth fault current may exceed the fundamental one. The nonsinusoidal earth fault current influences tripping of the residual current devices. In the paper, results of the theoretical analysis and the laboratory tests of residual current devices operation are presented and discussed. They prove that in some cases higher frequency components cause improper tripping of the residual current devices and a real hazard of electrocution exists.
接地故障电流谐波对漏电装置脱扣的影响
在低压系统中,防止间接接触最常用的保护手段是自动断开电源,因为它是一种简单且经济的方式,可以实现电气装置的安全。漏电保护装置是常用的一种保护装置。在某些情况下,必须使用rcd。静态变流器,特别是变频器的广泛应用,导致在非正弦接地故障电流流过的电路中安装rcd。变频器输出电路中的接地故障电流包括谐波和间谐波,其顺序主要取决于PWM频率。接地故障电流中高频分量的电平可能超过基频分量。非正弦接地故障电流影响剩余电流装置的脱扣。本文对残流器件运行的理论分析和实验室试验结果进行了介绍和讨论。他们证明,在某些情况下,较高的频率分量会导致漏电装置的不正确跳闸,并存在触电的真正危险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信