Towards real-time DNA biometrics using GPU-accelerated processing

Mario Reja, Ciprian-Petrisor Pungila, V. Negru
{"title":"Towards real-time DNA biometrics using GPU-accelerated processing","authors":"Mario Reja, Ciprian-Petrisor Pungila, V. Negru","doi":"10.1093/jigpal/jzaa034","DOIUrl":null,"url":null,"abstract":"\n Decoding the human genome in the past decades has brought into focus a computationally intensive operation through DNA profiling. The typical search space for these kinds of problems is extremely large and requires specialized hardware and algorithms to perform the necessary sequence analysis. In this paper, we propose an innovative and scalable approach to exact multi-pattern matching of nucleotide sequences by harnessing the massively parallel computing power found in commodity graphical processing units. Our approach places careful consideration on preprocessing of DNA datasets and runtime performance, while exploiting the full capabilities of the heterogeneous platform it runs on. Finally, we evaluate our models against real-world DNA sequences.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzaa034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Decoding the human genome in the past decades has brought into focus a computationally intensive operation through DNA profiling. The typical search space for these kinds of problems is extremely large and requires specialized hardware and algorithms to perform the necessary sequence analysis. In this paper, we propose an innovative and scalable approach to exact multi-pattern matching of nucleotide sequences by harnessing the massively parallel computing power found in commodity graphical processing units. Our approach places careful consideration on preprocessing of DNA datasets and runtime performance, while exploiting the full capabilities of the heterogeneous platform it runs on. Finally, we evaluate our models against real-world DNA sequences.
利用gpu加速处理实现实时DNA生物识别
在过去的几十年里,解码人类基因组已经成为通过DNA分析进行计算密集型操作的焦点。这类问题的典型搜索空间非常大,需要专门的硬件和算法来执行必要的序列分析。在本文中,我们提出了一种创新和可扩展的方法,通过利用商品图形处理单元中的大规模并行计算能力来精确地匹配核苷酸序列的多模式。我们的方法仔细考虑了DNA数据集的预处理和运行时性能,同时利用了它运行的异构平台的全部功能。最后,我们根据真实的DNA序列评估我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信