Sensor Fusion of Odometer, Compass and Beacon Distance for Mobile Robots

R. Fraanje, René Beltman, Fidelis Theinert, M. V. Osch, Teade Punter, John Bolte
{"title":"Sensor Fusion of Odometer, Compass and Beacon Distance for Mobile Robots","authors":"R. Fraanje, René Beltman, Fidelis Theinert, M. V. Osch, Teade Punter, John Bolte","doi":"10.4018/ijaiml.2020010101","DOIUrl":null,"url":null,"abstract":"The estimation of the pose of a differential drive mobile robot from noisy odometer, compass, and beacon distance measurements is studied. The estimation problem, which is a state estimation problem with unknown input, is reformulated into a state estimation problem with known input and a process noise term. A heuristic sensor fusion algorithm solving this state-estimation problem is proposed and compared with the extended Kalman filter solution and the Particle Filter solution in a simulation experiment.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.2020010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of the pose of a differential drive mobile robot from noisy odometer, compass, and beacon distance measurements is studied. The estimation problem, which is a state estimation problem with unknown input, is reformulated into a state estimation problem with known input and a process noise term. A heuristic sensor fusion algorithm solving this state-estimation problem is proposed and compared with the extended Kalman filter solution and the Particle Filter solution in a simulation experiment.
移动机器人里程表、罗盘和信标距离传感器融合
研究了基于噪声里程计、罗盘和信标距离测量的差动驱动移动机器人姿态估计问题。将未知输入的状态估计问题转化为已知输入和过程噪声项的状态估计问题。提出了一种求解该状态估计问题的启发式传感器融合算法,并在仿真实验中与扩展卡尔曼滤波解和粒子滤波解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信