Systematic detection of Titan's clouds in VIMS/Cassini hyperspectral images using a new automated algorithm

S. Rodriguez, F. Schmidt, S. Moussaoui, S. Mouélic, P. Rannou, J. Barnes, C. Sotin, Robert H. Brown, K. Baines, B. Buratti, R. Clark, P. Nicholson
{"title":"Systematic detection of Titan's clouds in VIMS/Cassini hyperspectral images using a new automated algorithm","authors":"S. Rodriguez, F. Schmidt, S. Moussaoui, S. Mouélic, P. Rannou, J. Barnes, C. Sotin, Robert H. Brown, K. Baines, B. Buratti, R. Clark, P. Nicholson","doi":"10.1109/WHISPERS.2010.5594893","DOIUrl":null,"url":null,"abstract":"Titan is the Saturn's largest moon where meteorological processes are very active, as observed most recently by the Cassini/Huygens orbiter. Cloud monitoring is a prime method to observe, describe and understand present climate on Titan. Unlike our previous detection method, which was based on manual control of threshold, we investigate here the possibility of a fully automated methodology based on blind source separation to analyzing years of Cassini near-infrared cloud images. Since the spectral signature of Titan clouds are diverse and not known a priori, the choice of a blind source separation seems to be appropriate. Preliminary results show that Titan's cloud detection is possible using the recent implementation of a Bayesian source separation method.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Titan is the Saturn's largest moon where meteorological processes are very active, as observed most recently by the Cassini/Huygens orbiter. Cloud monitoring is a prime method to observe, describe and understand present climate on Titan. Unlike our previous detection method, which was based on manual control of threshold, we investigate here the possibility of a fully automated methodology based on blind source separation to analyzing years of Cassini near-infrared cloud images. Since the spectral signature of Titan clouds are diverse and not known a priori, the choice of a blind source separation seems to be appropriate. Preliminary results show that Titan's cloud detection is possible using the recent implementation of a Bayesian source separation method.
使用新的自动算法在VIMS/卡西尼号高光谱图像中系统地检测土卫六的云层
土卫六是土星最大的卫星,卡西尼/惠更斯轨道飞行器最近观测到的气象过程非常活跃。云监测是观察、描述和了解土卫六当前气候的主要方法。与以往基于人工控制阈值的检测方法不同,我们在这里研究了基于盲源分离的全自动方法来分析卡西尼号近红外云图的可能性。由于土卫六云的光谱特征是多样的,而且不是先验的,所以选择盲源分离似乎是合适的。初步结果表明,使用最近实现的贝叶斯源分离方法,土卫六的云检测是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信