Chaotic Inertia Weight Particle Swarm Optimization (CIWPSO): An Efficient Technique for Solar Cell Parameter Estimation

Arooj Tariq Kiani, M. Faisal Nadeem, A. Ahmed, I. A. Sajjad, A. Raza, I. Khan
{"title":"Chaotic Inertia Weight Particle Swarm Optimization (CIWPSO): An Efficient Technique for Solar Cell Parameter Estimation","authors":"Arooj Tariq Kiani, M. Faisal Nadeem, A. Ahmed, I. A. Sajjad, A. Raza, I. Khan","doi":"10.1109/iCoMET48670.2020.9074085","DOIUrl":null,"url":null,"abstract":"Solar cell modeling and optimal estimation of their associated parameters is a key point to improve performance of PV solar system. Recently, different numerical, analytical and hybrid approaches have been developed for parameter extraction of PV model. In this paper the Chaotic Inertia Weight Particle Swarm Optimization (CIWPSO) technique is proposed to estimate PV parameters of single and double diode. Furthermore, the Newton Raphson method (NRM) is employed to guide the fitness indicator towards optimal solution. The propose approach solves the premature convergence problem of the conventional PSO. This new approach is implemented on RTC France Silicon Solar cell, under standard test conditions (STC). CIWPSO has ability to find optimal solution with the requirement of relatively less computational time and number of iterations. The validity of results clearly supports the statement that, the proposed approach is highly accurate, efficient and fast for parameter estimation of PV cells.","PeriodicalId":431051,"journal":{"name":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET48670.2020.9074085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Solar cell modeling and optimal estimation of their associated parameters is a key point to improve performance of PV solar system. Recently, different numerical, analytical and hybrid approaches have been developed for parameter extraction of PV model. In this paper the Chaotic Inertia Weight Particle Swarm Optimization (CIWPSO) technique is proposed to estimate PV parameters of single and double diode. Furthermore, the Newton Raphson method (NRM) is employed to guide the fitness indicator towards optimal solution. The propose approach solves the premature convergence problem of the conventional PSO. This new approach is implemented on RTC France Silicon Solar cell, under standard test conditions (STC). CIWPSO has ability to find optimal solution with the requirement of relatively less computational time and number of iterations. The validity of results clearly supports the statement that, the proposed approach is highly accurate, efficient and fast for parameter estimation of PV cells.
混沌惯性权重粒子群算法:一种有效的太阳能电池参数估计方法
太阳能电池的建模及其相关参数的优化估计是提高光伏太阳能系统性能的关键。近年来,针对PV模型的参数提取,提出了不同的数值方法、解析方法和混合方法。本文提出了混沌惯性加权粒子群优化(CIWPSO)技术来估计单二极管和双二极管的PV参数。然后,利用Newton Raphson方法(NRM)将适应度指标导向最优解。该方法解决了传统粒子群算法的早熟收敛问题。在标准测试条件下,在RTC法国硅太阳能电池上实现了这种新方法。CIWPSO能够以相对较少的计算时间和迭代次数找到最优解。结果的有效性清楚地支持了该方法对光伏电池参数估计的准确性、有效性和快速性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信