Wireless Optogenetic Manipulation of Direct-Pathway Neurons of Basal Ganglia in Free Moving Mice

Xinli Tian, Adam D. Richard, Isabella Van Savage, Xiao-Hong Lu
{"title":"Wireless Optogenetic Manipulation of Direct-Pathway Neurons of Basal Ganglia in Free Moving Mice","authors":"Xinli Tian, Adam D. Richard, Isabella Van Savage, Xiao-Hong Lu","doi":"10.1109/SBEC.2016.52","DOIUrl":null,"url":null,"abstract":"Striatum is one of the major components of basal ganglia. More than 90% of principle neurons in striatum are medium spiny neuron (MSN). The MSNs are further subdivided into the direct-pathway (striatonigral or D1) MSNs or the indirect-pathway (striatopallidal or D2) MSNs. The striatonigral MSNs project to GPi and substantia nigra (SN). The striatopallidal MSNs project to globus pallidus externa (GPe), which can indirectly influence the SN via the subthalamic nuclei (STN). Disruption of two pathway have been implicated in the pathogenesis of neuropsychiatric disorders such as Parkinson's disease, Huntington's disease, Drug addiction and Schizophrenia. The development of optogenetics has introduced an elegant method to stimulate MSNs and basal ganglia circuits, both in vitro and in vivo. However, current optogenetics setup employs cumbersome tethers and commutators that prohibits the studying the free, natural behavior of the animal. Using a light weight (1-2 g) wireless infrared receiver coupled to optic fiber implants, we could deliver mW order light in free mouse. Injection of Cre-dependent Channelrhodopsin or/and halorhodops in an inverted open-reading-frame in Bacterial Artificial Chromosome (BAC) transgenic Drd1a-Cre mice enables us to precisely stimulate or/and inhibit genetically defined direct-pathway neurons. We have successfully employed such optogenetic device to examine more complex behavior in plus maze (for anxiety), three chamber interaction test (for social interaction) and rotarod tests. Our results revealed that direct-pathway stimulation elicits robust grooming behavior in free moving mice in their home cage, recapitulating the D1 receptor agonist-induced behavioral phenotypes in mice. These experiments demonstrate that the wireless optogenetic device can be readily used in complex behavioral experiments. Such technology will accelerate progress in both basic neuroscience and translational technologies and have strong potential for broader use in biology and medicine.","PeriodicalId":196856,"journal":{"name":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBEC.2016.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Striatum is one of the major components of basal ganglia. More than 90% of principle neurons in striatum are medium spiny neuron (MSN). The MSNs are further subdivided into the direct-pathway (striatonigral or D1) MSNs or the indirect-pathway (striatopallidal or D2) MSNs. The striatonigral MSNs project to GPi and substantia nigra (SN). The striatopallidal MSNs project to globus pallidus externa (GPe), which can indirectly influence the SN via the subthalamic nuclei (STN). Disruption of two pathway have been implicated in the pathogenesis of neuropsychiatric disorders such as Parkinson's disease, Huntington's disease, Drug addiction and Schizophrenia. The development of optogenetics has introduced an elegant method to stimulate MSNs and basal ganglia circuits, both in vitro and in vivo. However, current optogenetics setup employs cumbersome tethers and commutators that prohibits the studying the free, natural behavior of the animal. Using a light weight (1-2 g) wireless infrared receiver coupled to optic fiber implants, we could deliver mW order light in free mouse. Injection of Cre-dependent Channelrhodopsin or/and halorhodops in an inverted open-reading-frame in Bacterial Artificial Chromosome (BAC) transgenic Drd1a-Cre mice enables us to precisely stimulate or/and inhibit genetically defined direct-pathway neurons. We have successfully employed such optogenetic device to examine more complex behavior in plus maze (for anxiety), three chamber interaction test (for social interaction) and rotarod tests. Our results revealed that direct-pathway stimulation elicits robust grooming behavior in free moving mice in their home cage, recapitulating the D1 receptor agonist-induced behavioral phenotypes in mice. These experiments demonstrate that the wireless optogenetic device can be readily used in complex behavioral experiments. Such technology will accelerate progress in both basic neuroscience and translational technologies and have strong potential for broader use in biology and medicine.
自由运动小鼠基底神经节直接通路神经元的无线光遗传操作
纹状体是基底神经节的主要组成部分之一。纹状体中90%以上的主要神经元为中棘神经元。单粒神经网络进一步细分为直接通路(纹状核或D1)单粒神经网络或间接通路(纹状核或D2)单粒神经网络。纹状图msn项目的GPi和黑质(SN)。纹状体的msn投射到外白球(GPe),通过丘脑下核(STN)间接影响SN。这两条通路的破坏与神经精神疾病如帕金森病、亨廷顿病、药物成瘾和精神分裂症的发病机制有关。光遗传学的发展已经引入了一种优雅的方法来刺激msn和基底神经节回路,无论是在体外还是在体内。然而,目前的光遗传学设置使用了笨重的绳索和换向器,这阻碍了对动物自由、自然行为的研究。利用一个重量轻(1- 2g)的无线红外接收器与光纤植入物耦合,我们可以在自由小鼠体内传递毫瓦量级的光。在细菌人工染色体(BAC)转基因Drd1a-Cre小鼠的倒置开放阅读框中注射cre依赖性通道视紫红质或/和盐紫红质,使我们能够精确地刺激或/和抑制遗传上定义的直接通路神经元。我们已经成功地利用这种光基因装置来检测更复杂的行为,包括正迷宫(焦虑测试)、三室相互作用测试(社交测试)和旋转体测试。我们的研究结果表明,直接通路刺激在自由运动的小鼠中引发了强大的梳理行为,重现了D1受体激动剂诱导的小鼠行为表型。这些实验表明,无线光遗传装置可以很容易地用于复杂的行为实验。这种技术将加速基础神经科学和转化技术的进步,并在生物学和医学方面具有广泛应用的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信