Adaptive genetic algorithm based on a new entropy measurement

Q. Ma, Jiang-Chuan Chen, Xiao-Yan Xu, Yabin Shao
{"title":"Adaptive genetic algorithm based on a new entropy measurement","authors":"Q. Ma, Jiang-Chuan Chen, Xiao-Yan Xu, Yabin Shao","doi":"10.1109/ICMLC.2014.7009112","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive genetic algorithm based on a new entropy measurement, and deduce the limit of the selection probabilities of individuals under the entropy measurement. The theoretical analysis and a comparative experiment show that the new selection strategy based on the new entropy measurement can adjust dynamically the selection intensity according to the population state. The proposed method shifts dynamically the balance between the exploitation and exploration performance of genetic algorithms to enhance global optimal performance of algorithm.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an adaptive genetic algorithm based on a new entropy measurement, and deduce the limit of the selection probabilities of individuals under the entropy measurement. The theoretical analysis and a comparative experiment show that the new selection strategy based on the new entropy measurement can adjust dynamically the selection intensity according to the population state. The proposed method shifts dynamically the balance between the exploitation and exploration performance of genetic algorithms to enhance global optimal performance of algorithm.
基于熵测度的自适应遗传算法
本文提出了一种基于熵测度的自适应遗传算法,并推导了熵测度下个体选择概率的极限。理论分析和对比实验表明,基于新熵度量的新选择策略可以根据种群状态动态调整选择强度。该方法动态地改变了遗传算法的开发性能和探索性能之间的平衡,提高了算法的全局最优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信