COVID-19 Medical Data Integration Approach

V. Todorova, Veska Gancheva, V. Mladenov
{"title":"COVID-19 Medical Data Integration Approach","authors":"V. Todorova, Veska Gancheva, V. Mladenov","doi":"10.37394/232023.2022.2.11","DOIUrl":null,"url":null,"abstract":"The need to create automated methods for extracting knowledge from data arises from the accumulation of a large amount of data. This paper presents a conceptual model for integrating and processing medical data in three layers, comprising a total of six phases: a model for integrating, filtering, sorting and aggregating Covid-19 data. A medical data integration workflow was designed, including steps of data integration, filtering and sorting. The workflow for Covid-19 medical data from clinical records of 20400 potential patients was employed.","PeriodicalId":336407,"journal":{"name":"MOLECULAR SCIENCES AND APPLICATIONS","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOLECULAR SCIENCES AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232023.2022.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The need to create automated methods for extracting knowledge from data arises from the accumulation of a large amount of data. This paper presents a conceptual model for integrating and processing medical data in three layers, comprising a total of six phases: a model for integrating, filtering, sorting and aggregating Covid-19 data. A medical data integration workflow was designed, including steps of data integration, filtering and sorting. The workflow for Covid-19 medical data from clinical records of 20400 potential patients was employed.
COVID-19医疗数据集成方法
由于大量数据的积累,需要创建从数据中提取知识的自动化方法。本文提出了一个三层医疗数据整合与处理的概念模型,共包括六个阶段:新冠肺炎数据的整合、过滤、排序和聚合模型。设计了一个医疗数据集成工作流,包括数据集成、过滤和排序步骤。采用20400例潜在患者临床记录中的新冠肺炎医疗数据工作流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信