Siti Juliana Abu Bakar, Koay J-Shenn, P. Goh, N. S. Ahmad
{"title":"Development of magnetic levitation system with position and orientation control","authors":"Siti Juliana Abu Bakar, Koay J-Shenn, P. Goh, N. S. Ahmad","doi":"10.11591/ijres.v12.i2.pp287-296","DOIUrl":null,"url":null,"abstract":"This work demonstrates the design and development of a magnetic levitation (MagLev) system that is able to control both the position and orientation of the levitated object. For the position control, a pole placement method was exploited to estimate parameters of the proportional integral derivative (PID) controller. In addition, the MagLev was constructed using a pair of electromagnets, two infrared (IR) receiver-emitter pairs and a servo motor to allow the orientation of the object to be controlled. The proposed controller was programmed in a LabVIEW environment, which was then compiled and deployed into an embedded NI myRIO board. Experimental results demonstrated that the proposed method was able to achieve a zero steady-state orientation error when the object was rotated from 0 ◦ to ±90◦ , a steady-state position error of 0.3 cm without rotation, and steady-state position errors of no greater than 1.2 cm with rotation.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v12.i2.pp287-296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work demonstrates the design and development of a magnetic levitation (MagLev) system that is able to control both the position and orientation of the levitated object. For the position control, a pole placement method was exploited to estimate parameters of the proportional integral derivative (PID) controller. In addition, the MagLev was constructed using a pair of electromagnets, two infrared (IR) receiver-emitter pairs and a servo motor to allow the orientation of the object to be controlled. The proposed controller was programmed in a LabVIEW environment, which was then compiled and deployed into an embedded NI myRIO board. Experimental results demonstrated that the proposed method was able to achieve a zero steady-state orientation error when the object was rotated from 0 ◦ to ±90◦ , a steady-state position error of 0.3 cm without rotation, and steady-state position errors of no greater than 1.2 cm with rotation.