U2SOD-DB: a database system to manage large-scale ubiquitous urban sensing origin-destination data

Jianting Zhang, C. Kamga, H. Gong, L. Gruenwald
{"title":"U2SOD-DB: a database system to manage large-scale <u>u</u>biquitous <u>u</u>rban <u>s</u>ensing <u>o</u>rigin-<u>d</u>estination data","authors":"Jianting Zhang, C. Kamga, H. Gong, L. Gruenwald","doi":"10.1145/2346496.2346522","DOIUrl":null,"url":null,"abstract":"Volumes of urban sensing data captured by consumer electronic devices are growing exponentially and current disk-resident database systems are becoming increasingly incapable of handling such large-scale data efficiently. In this paper, we report our design and implementation of U2SOD-DB, a column-oriented, Graphics Processing Unit (GPU)-accelerated, in-memory data management system targeted at large-scale ubiquitous urban sensing origin-destination data. Experiment results show that U2SOD-DB is capable of handling hundreds of millions of taxi-trip records with GPS recorded pickup and drop-off locations and times efficiently. Spatial and temporal aggregations on 150 million pickup locations and times in middle-town and downtown Manhattan areas in the New York City (NYC) can be completed in a fraction of a second. This is 10-30X faster than a serial CPU implementation due to GPU accelerations. Spatially joining the 150 million taxi pickup locations with 43 thousand polygons in identifying trip purposes has reduced the runtime from 30.5 hours to around 1,000 seconds and achieved a two orders (100X) speedup using a hybrid CPU-GPU approach.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2346496.2346522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Volumes of urban sensing data captured by consumer electronic devices are growing exponentially and current disk-resident database systems are becoming increasingly incapable of handling such large-scale data efficiently. In this paper, we report our design and implementation of U2SOD-DB, a column-oriented, Graphics Processing Unit (GPU)-accelerated, in-memory data management system targeted at large-scale ubiquitous urban sensing origin-destination data. Experiment results show that U2SOD-DB is capable of handling hundreds of millions of taxi-trip records with GPS recorded pickup and drop-off locations and times efficiently. Spatial and temporal aggregations on 150 million pickup locations and times in middle-town and downtown Manhattan areas in the New York City (NYC) can be completed in a fraction of a second. This is 10-30X faster than a serial CPU implementation due to GPU accelerations. Spatially joining the 150 million taxi pickup locations with 43 thousand polygons in identifying trip purposes has reduced the runtime from 30.5 hours to around 1,000 seconds and achieved a two orders (100X) speedup using a hybrid CPU-GPU approach.
U2SOD-DB:管理大规模泛在城市传感始发地-目的地数据的数据库系统
消费电子设备捕获的城市传感数据量呈指数级增长,目前的磁盘驻留数据库系统越来越不能有效地处理这种大规模数据。在本文中,我们报告了我们设计和实现的U2SOD-DB,这是一个面向列的,图形处理单元(GPU)加速的内存数据管理系统,针对大规模无处不在的城市传感起点-目的地数据。实验结果表明,U2SOD-DB能够高效处理数亿条由GPS记录的出租车上下车地点和时间的出行记录。在不到一秒的时间内,就可以完成纽约市曼哈顿中城和市中心1.5亿个接送地点和时间的时空聚合。由于GPU加速,这比串行CPU实现快10-30倍。在空间上,将1.5亿个出租车接送点与4.3万个多边形结合起来,识别出行目的,将运行时间从30.5小时减少到约1000秒,并使用CPU-GPU混合方法实现了两倍(100倍)的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信