The Application of Convolutional Neural Network for Pollen Bearing Bee Classification

T. Sledevič
{"title":"The Application of Convolutional Neural Network for Pollen Bearing Bee Classification","authors":"T. Sledevič","doi":"10.1109/AIEEE.2018.8592464","DOIUrl":null,"url":null,"abstract":"The article presents the classification of images with pollen bearing bees using convolutional neural network (CNN). The aim is to find out a sufficient configuration of CNN required for future implementation on low-cost FPGA. A new dataset with bee images was collected on the entrances to several beehives. hidden layers with up to 15 15 x 15 down to 3x3 filter sizes. The CNN configured to three hidden layers 7–7, 5–5, 3–3 was selected for future application as a trade off between accuracy 94% and number of required arithmetic operations.","PeriodicalId":198244,"journal":{"name":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE.2018.8592464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The article presents the classification of images with pollen bearing bees using convolutional neural network (CNN). The aim is to find out a sufficient configuration of CNN required for future implementation on low-cost FPGA. A new dataset with bee images was collected on the entrances to several beehives. hidden layers with up to 15 15 x 15 down to 3x3 filter sizes. The CNN configured to three hidden layers 7–7, 5–5, 3–3 was selected for future application as a trade off between accuracy 94% and number of required arithmetic operations.
卷积神经网络在花粉蜂分类中的应用
本文介绍了卷积神经网络(CNN)对花粉蜜蜂图像的分类。目的是找出未来在低成本FPGA上实现所需的足够的CNN配置。在几个蜂箱的入口处收集了一个新的蜜蜂图像数据集。隐藏层与多达15 15 x 15到3x3过滤器尺寸。配置为3个隐藏层(7 - 7,5 - 5,3 - 3)的CNN被选择用于未来的应用,以在94%的准确率和所需的算术运算次数之间进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信