Approximate Solution of a Neutrosophic Nonlinear Van der Pol Oscillator Problem by Semi Analytical Method Using Thick Function

G. A. Toma, Fahed Farhood, Taqi A. Alkhatib
{"title":"Approximate Solution of a Neutrosophic Nonlinear Van der Pol Oscillator Problem by Semi Analytical Method Using Thick Function","authors":"G. A. Toma, Fahed Farhood, Taqi A. Alkhatib","doi":"10.54216/jnfs.060102","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical method (Homotopy perturbation method HPM) is used for solving the initial value problem represented by a neutrosophic nonlinear Van der Pol oscillator equation (N-VDP) arising in applied dynamics using the thick function. We find the solutions of the (N-VDP) equation by HPM and then compare the numerical results with fourth order Runge-Kutta method (RK4). The results showed that the HPM lead to accurate and efficient results. Furthermore, these results of the HPM scheme and RK4 are implemented in Matlab.","PeriodicalId":438286,"journal":{"name":"Journal of Neutrosophic and Fuzzy Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutrosophic and Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jnfs.060102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an analytical method (Homotopy perturbation method HPM) is used for solving the initial value problem represented by a neutrosophic nonlinear Van der Pol oscillator equation (N-VDP) arising in applied dynamics using the thick function. We find the solutions of the (N-VDP) equation by HPM and then compare the numerical results with fourth order Runge-Kutta method (RK4). The results showed that the HPM lead to accurate and efficient results. Furthermore, these results of the HPM scheme and RK4 are implemented in Matlab.
用厚函数半解析法近似解中性非线性Van der Pol振子问题
本文采用一种解析方法(同伦摄动法),利用厚函数求解应用动力学中出现的中性非线性范德波尔振子方程(N-VDP)所表示的初值问题。用HPM法求解了(N-VDP)方程,并与四阶龙格-库塔法(RK4)进行了比较。结果表明,HPM方法的结果准确、高效。最后,在Matlab中实现了HPM方案和RK4的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信