Comparison of polymeric and metal oxide hole transport material on the stability of FASnI3 perovskite solar cell

B. U, Bidisha Nath, Nagahanumaiah, Praveen C Ramamurthy
{"title":"Comparison of polymeric and metal oxide hole transport material on the stability of FASnI3 perovskite solar cell","authors":"B. U, Bidisha Nath, Nagahanumaiah, Praveen C Ramamurthy","doi":"10.1109/ICEE56203.2022.10118127","DOIUrl":null,"url":null,"abstract":"The Tin-based perovskite is an encouraging material in the development of non-toxic solar cell application, but its performance is limited by the poor chemical stability against oxygen and moisture. Therefore, tin-based perovskite solar cells are mostly fabricated in inverted planar device structures and the selection of underlying hole transport material plays a significant role in device stability. In this work, we report the comparison study between a metal oxide, nickel oxide, and polymeric poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) as a hole transport layer on device efficiency and stability of tin-based PSC. We obtained comparatively higher power conversion efficiency (PCE) with NiOx than others, however, the solar cell with PEDOT: PSS is more stable rather than NiOx for the duration of 900 hrs in a nitrogen ambient, without encapsulation.","PeriodicalId":281727,"journal":{"name":"2022 IEEE International Conference on Emerging Electronics (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE56203.2022.10118127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Tin-based perovskite is an encouraging material in the development of non-toxic solar cell application, but its performance is limited by the poor chemical stability against oxygen and moisture. Therefore, tin-based perovskite solar cells are mostly fabricated in inverted planar device structures and the selection of underlying hole transport material plays a significant role in device stability. In this work, we report the comparison study between a metal oxide, nickel oxide, and polymeric poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) as a hole transport layer on device efficiency and stability of tin-based PSC. We obtained comparatively higher power conversion efficiency (PCE) with NiOx than others, however, the solar cell with PEDOT: PSS is more stable rather than NiOx for the duration of 900 hrs in a nitrogen ambient, without encapsulation.
聚合物和金属氧化物空穴传输材料对FASnI3钙钛矿太阳能电池稳定性的影响
锡基钙钛矿在无毒太阳能电池应用的发展中是一种令人鼓舞的材料,但其性能受到抗氧和抗湿性差的化学稳定性的限制。因此,锡基钙钛矿太阳能电池大多采用倒平面器件结构制造,其下空穴输运材料的选择对器件的稳定性起着重要的作用。在这项工作中,我们报道了金属氧化物、氧化镍和聚合物聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT: PSS)作为空穴传输层对锡基PSC器件效率和稳定性的比较研究。我们用NiOx获得了相对较高的功率转换效率(PCE),然而,PEDOT: PSS的太阳能电池在没有封装的情况下在氮气环境中持续900小时的时间比NiOx更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信