The MinMax Fuzzy C-Means

Yoosof Mashayekhi, Ehsan Nazerfard, Arman Rahbar, Samira Sirzadeh Haji Mahmood
{"title":"The MinMax Fuzzy C-Means","authors":"Yoosof Mashayekhi, Ehsan Nazerfard, Arman Rahbar, Samira Sirzadeh Haji Mahmood","doi":"10.1109/KBEI.2019.8734919","DOIUrl":null,"url":null,"abstract":"Fuzzy c-means (FCM) is one of the most popular fuzzy clustering methods and it is used in various applications in computer science. Most clustering methods including FCM, suffer from bad initialization problem. If initial cluster centers (membership degree initialization in FCM) are not selected appropriately, it may yield poor results. In this paper we propose a method called MinMax FCM to overcome this problem. A new objective function is designed in MinMax FCM to this aim. We use maximum variance of clusters as objective function. In this regard, high-variance clusters are penalized. We compare MinMax FCM with FCM in terms of sum of clusters’ variances, maximum variance of clusters, and execution time using a number of UCI datasets.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8734919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuzzy c-means (FCM) is one of the most popular fuzzy clustering methods and it is used in various applications in computer science. Most clustering methods including FCM, suffer from bad initialization problem. If initial cluster centers (membership degree initialization in FCM) are not selected appropriately, it may yield poor results. In this paper we propose a method called MinMax FCM to overcome this problem. A new objective function is designed in MinMax FCM to this aim. We use maximum variance of clusters as objective function. In this regard, high-variance clusters are penalized. We compare MinMax FCM with FCM in terms of sum of clusters’ variances, maximum variance of clusters, and execution time using a number of UCI datasets.
最小模糊c均值
模糊c均值(FCM)是最流行的模糊聚类方法之一,在计算机科学中有着广泛的应用。包括FCM在内的大多数聚类方法都存在初始化不良的问题。如果初始聚类中心(FCM中的隶属度初始化)选择不合适,可能会产生较差的结果。在本文中,我们提出了一种称为MinMax FCM的方法来克服这个问题。为此,在最小最大FCM中设计了一个新的目标函数。我们使用聚类的最大方差作为目标函数。在这方面,高方差集群是不利的。我们比较了MinMax FCM和FCM在集群方差总和、集群最大方差和使用一些UCI数据集的执行时间方面的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信