Adaptive Kalman filter based on improved second order mutual difference estimation

Zhang Yixin, Z. Hai
{"title":"Adaptive Kalman filter based on improved second order mutual difference estimation","authors":"Zhang Yixin, Z. Hai","doi":"10.1109/IAEAC.2015.7428612","DOIUrl":null,"url":null,"abstract":"In this paper, a method to compute noise variance and adapt measurement noise covariance matrix R in Kalman filter is proposed. We construct a virtual redundant measurement using α-β-γ filter to apply the second order mutual difference estimation method, which estimate noise variance effectively, in single measurement to calculate noise variance. And statistical data selection algorithm is proposed to avoid inaccuracy caused by lag in the α-β-γ filter. Simulations indicate this method is effective in R adaption with relatively low computation.","PeriodicalId":398100,"journal":{"name":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2015.7428612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a method to compute noise variance and adapt measurement noise covariance matrix R in Kalman filter is proposed. We construct a virtual redundant measurement using α-β-γ filter to apply the second order mutual difference estimation method, which estimate noise variance effectively, in single measurement to calculate noise variance. And statistical data selection algorithm is proposed to avoid inaccuracy caused by lag in the α-β-γ filter. Simulations indicate this method is effective in R adaption with relatively low computation.
基于改进二阶互差估计的自适应卡尔曼滤波
本文提出了一种卡尔曼滤波中噪声方差的计算和测量噪声协方差矩阵R的自适应方法。利用α-β-γ滤波器构造虚拟冗余测量,采用二阶互差估计方法,有效估计噪声方差,在单次测量中计算噪声方差。并提出了统计数据选择算法,以避免α-β-γ滤波器的滞后造成的误差。仿真结果表明,该方法具有较好的R自适应能力,且计算量较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信