The Topological Mu-Calculus: completeness and decidability

A. Baltag, N. Bezhanishvili, David Fern'andez-Duque
{"title":"The Topological Mu-Calculus: completeness and decidability","authors":"A. Baltag, N. Bezhanishvili, David Fern'andez-Duque","doi":"10.1109/LICS52264.2021.9470560","DOIUrl":null,"url":null,"abstract":"We study the topological µ-calculus, based on both Cantor derivative and closure modalities, proving completeness, decidability and FMP over general topological spaces, as well as over T0 and TD spaces. We also investigate relational µ-calculus, providing general completeness results for all natural fragments of µ-calculus over many different classes of relational frames. Unlike most other such proofs for µ-calculus, ours is modeltheoretic, making an innovative use of a known Modal Logic method (–the ’final’ submodel of the canonical model), that has the twin advantages of great generality and essential simplicity.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":" 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study the topological µ-calculus, based on both Cantor derivative and closure modalities, proving completeness, decidability and FMP over general topological spaces, as well as over T0 and TD spaces. We also investigate relational µ-calculus, providing general completeness results for all natural fragments of µ-calculus over many different classes of relational frames. Unlike most other such proofs for µ-calculus, ours is modeltheoretic, making an innovative use of a known Modal Logic method (–the ’final’ submodel of the canonical model), that has the twin advantages of great generality and essential simplicity.
拓扑mu微积分:完备性和可判定性
我们研究了基于Cantor导数和闭包模态的拓扑微微积分,证明了一般拓扑空间以及T0和TD空间上的完备性、可判决性和FMP。我们还研究了关系微微积分,在许多不同类型的关系框架上提供了所有自然微微积分片段的一般完备性结果。与大多数其他微微积分的证明不同,我们的证明是模型论的,创新地使用了已知的模态逻辑方法(规范模型的“最终”子模型),这种方法具有很强的通用性和本质上的简单性的双重优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信