Anisotropic Antiplane Elastoplastic Problem

S. Senashov, I. Savostyanova, O. Cherepanova, С И Сенашов, Ирина Л. Савостьянова, Ольга Н. Черепанова
{"title":"Anisotropic Antiplane Elastoplastic Problem","authors":"S. Senashov, I. Savostyanova, O. Cherepanova, С И Сенашов, Ирина Л. Савостьянова, Ольга Н. Черепанова","doi":"10.17516/1997-1397-2020-13-2-213-217","DOIUrl":null,"url":null,"abstract":"Received 10.11.2019, received in revised form 11.01.2020, accepted 20.02.2020 Abstract. In this work we solve an anisotropic antiplane elastoplastic problem about stress state in a body weakened by a hole bounded by a piecewise-smooth contour. We give the conservation laws which allowed us to reduce calculations of stress components to a contour integral over the contour of the hole. The conservation laws allowed us to find the boundary between the elastic and plastic areas.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-2-213-217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Received 10.11.2019, received in revised form 11.01.2020, accepted 20.02.2020 Abstract. In this work we solve an anisotropic antiplane elastoplastic problem about stress state in a body weakened by a hole bounded by a piecewise-smooth contour. We give the conservation laws which allowed us to reduce calculations of stress components to a contour integral over the contour of the hole. The conservation laws allowed us to find the boundary between the elastic and plastic areas.
各向异性反平面弹塑性问题
收稿日期:10.11.2019,收稿日期:11.01.2020,收稿日期:20.02.2020。本文解决了以分段光滑轮廓为界的孔洞削弱体的应力状态的各向异性反平面弹塑性问题。我们给出了守恒定律,使我们能够将应力分量的计算简化为孔轮廓上的轮廓积分。守恒定律使我们能够找到弹性区域和塑性区域之间的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信