Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters

Ivanna Zorgno, M. C. Blanc, Simón Oxenford, Francisco Gil Garbagnoli, C. D'Giano, Antonio Quintero-Rincón
{"title":"Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters","authors":"Ivanna Zorgno, M. C. Blanc, Simón Oxenford, Francisco Gil Garbagnoli, C. D'Giano, Antonio Quintero-Rincón","doi":"10.1109/ARGENCON.2018.8646234","DOIUrl":null,"url":null,"abstract":"Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals.","PeriodicalId":395838,"journal":{"name":"2018 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON.2018.8646234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals.
基于统计参数的1-NN分类器癫痫发作检测
癫痫是一种由大脑皮层中一组神经元过度放电引起的疾病。利用脑电图信号提取这些信息是生物医学信号处理中的一个持续挑战。本文提出了一种基于t-位置尺度分布参数与方差和Pearson相关系数耦合的癫痫脑电图信号起病发作检测新方法。1-近邻分类器在分析的45个信号中获得了91%的灵敏度(真阳性率)和95%的特异性(真阴性率),平均延迟为4.5秒,这表明所提出的方法对癫痫性脑电图信号的发作检测有潜在的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信