Towards Selecting Informative Content for Cyber Threat Intelligence

Panos Panagiotou, Christos Iliou, Konstantinos Apostolou, T. Tsikrika, S. Vrochidis, P. Chatzimisios, I. Kompatsiaris
{"title":"Towards Selecting Informative Content for Cyber Threat Intelligence","authors":"Panos Panagiotou, Christos Iliou, Konstantinos Apostolou, T. Tsikrika, S. Vrochidis, P. Chatzimisios, I. Kompatsiaris","doi":"10.1109/CSR51186.2021.9527909","DOIUrl":null,"url":null,"abstract":"Nowadays, there is an increasing need for cyber security professionals to make use of tools that automatically extract Cyber Threat Intelligence (CTI) relying on information collected from relevant blogs and news sources that are publicly available. When such sources are used, an important part of the CTI extraction process is content selection, in which pages that do not contain CTI-related information should be filtered out. For this task, we apply supervised machine learning-based text classification techniques, trained on a new dataset created for the purposes of this work. Furthermore, we show in practice the importance of a good content selection process in a commonly used CTI extraction pipeline, by inspecting the results of the Named Entity Recognition (NER) process that normally follows.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, there is an increasing need for cyber security professionals to make use of tools that automatically extract Cyber Threat Intelligence (CTI) relying on information collected from relevant blogs and news sources that are publicly available. When such sources are used, an important part of the CTI extraction process is content selection, in which pages that do not contain CTI-related information should be filtered out. For this task, we apply supervised machine learning-based text classification techniques, trained on a new dataset created for the purposes of this work. Furthermore, we show in practice the importance of a good content selection process in a commonly used CTI extraction pipeline, by inspecting the results of the Named Entity Recognition (NER) process that normally follows.
网络威胁情报信息内容选择研究
如今,越来越多的网络安全专业人员需要利用自动提取网络威胁情报(CTI)的工具,这些工具依赖于从公开的相关博客和新闻来源收集的信息。当使用这些源时,CTI提取过程的一个重要部分是内容选择,其中不包含CTI相关信息的页面应被过滤掉。对于这项任务,我们应用基于监督机器学习的文本分类技术,在为此工作目的创建的新数据集上进行训练。此外,我们通过检查通常遵循的命名实体识别(NER)过程的结果,在实践中展示了在常用的CTI提取管道中良好内容选择过程的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信