Erwin Wu, Hayato Nishioka, Shinichi Furuya, H. Koike
{"title":"Marker-removal Networks to Collect Precise 3D Hand Data for RGB-based Estimation and its Application in Piano","authors":"Erwin Wu, Hayato Nishioka, Shinichi Furuya, H. Koike","doi":"10.1109/WACV56688.2023.00299","DOIUrl":null,"url":null,"abstract":"Hand pose analysis is a key step to understanding dexterous hand performances of many high-level skills, such as playing the piano. Currently, most accurate hand tracking systems are using fabric-/marker-based sensing that potentially disturbs users’ performance. On the other hand, markerless computer vision-based methods rely on a precise bare-hand dataset for training, which is difficult to obtain. In this paper, we collect a large-scale high precision 3D hand pose dataset with a small workload using a marker-removal network (MR-Net). The proposed MR-Net translates the marked-hand images to realistic bare-hand images, and the corresponding 3D postures are captured by a motion capture thus few manual annotations are required. A baseline estimation network PiaNet is introduced and we report the accuracy of various metrics together with a blind qualitative test to show the practical effect.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hand pose analysis is a key step to understanding dexterous hand performances of many high-level skills, such as playing the piano. Currently, most accurate hand tracking systems are using fabric-/marker-based sensing that potentially disturbs users’ performance. On the other hand, markerless computer vision-based methods rely on a precise bare-hand dataset for training, which is difficult to obtain. In this paper, we collect a large-scale high precision 3D hand pose dataset with a small workload using a marker-removal network (MR-Net). The proposed MR-Net translates the marked-hand images to realistic bare-hand images, and the corresponding 3D postures are captured by a motion capture thus few manual annotations are required. A baseline estimation network PiaNet is introduced and we report the accuracy of various metrics together with a blind qualitative test to show the practical effect.