Snapshot-based offloading for machine learning web app: work-in-progress

InChang Jeong, H. Jeong, Soo-Mook Moon
{"title":"Snapshot-based offloading for machine learning web app: work-in-progress","authors":"InChang Jeong, H. Jeong, Soo-Mook Moon","doi":"10.1145/3125503.3125625","DOIUrl":null,"url":null,"abstract":"We propose a new approach to running machine learning (ML) web app on resource-constrained embedded devices by offloading ML computations to servers. We can dynamically offload computations depending on the problem size and network status. The execution state is saved in the form of another web app called snapshot which simplifies the state migration. Some issues related to ML such as how to handle the Canvas object, the ML model, and the privacy of user data are addressed. The proposed offloading works for real web apps with a performance comparable to running the app entirely on the server.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125503.3125625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a new approach to running machine learning (ML) web app on resource-constrained embedded devices by offloading ML computations to servers. We can dynamically offload computations depending on the problem size and network status. The execution state is saved in the form of another web app called snapshot which simplifies the state migration. Some issues related to ML such as how to handle the Canvas object, the ML model, and the privacy of user data are addressed. The proposed offloading works for real web apps with a performance comparable to running the app entirely on the server.
基于快照的机器学习web应用卸载:工作在进行中
我们提出了一种在资源受限的嵌入式设备上运行机器学习(ML) web应用程序的新方法,即将ML计算卸载到服务器上。我们可以根据问题大小和网络状态动态卸载计算。执行状态以另一个名为snapshot的web应用程序的形式保存,这简化了状态迁移。解决了一些与ML相关的问题,例如如何处理Canvas对象、ML模型和用户数据的隐私。建议的卸载适用于真正的web应用程序,其性能与完全在服务器上运行应用程序相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信