Composite vector stochastic processes model in the task of signals' recognition

Natalija Chmelařová, V. Tykhonov
{"title":"Composite vector stochastic processes model in the task of signals' recognition","authors":"Natalija Chmelařová, V. Tykhonov","doi":"10.1109/RADIOELEK.2016.7477402","DOIUrl":null,"url":null,"abstract":"The composite vector stochastic processes model is usable in many signal processing areas. Advantages of the model utilization, in task of electric motors acoustic signals parametric estimations, are shown in this paper. Models' results are compared with the traditional statistical methods for the signal analysis, in the two samples classes recognition task. The expressions for correlation function, autoregressive models' parameters calculation, and parametric power spectral density estimation in autoregressive composite vector stochastic processes representation, are shown in the paper. The proposed method for signals analysis, presented in this paper, enables to obtain information, which is difficult to gain by using traditional methods of statistical analysis.","PeriodicalId":159747,"journal":{"name":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2016.7477402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The composite vector stochastic processes model is usable in many signal processing areas. Advantages of the model utilization, in task of electric motors acoustic signals parametric estimations, are shown in this paper. Models' results are compared with the traditional statistical methods for the signal analysis, in the two samples classes recognition task. The expressions for correlation function, autoregressive models' parameters calculation, and parametric power spectral density estimation in autoregressive composite vector stochastic processes representation, are shown in the paper. The proposed method for signals analysis, presented in this paper, enables to obtain information, which is difficult to gain by using traditional methods of statistical analysis.
复合向量随机过程模型在信号识别中的应用
复合矢量随机过程模型可用于许多信号处理领域。本文指出了该模型在电机声信号参数估计中的优越性。在两类样本识别任务中,将模型结果与传统的信号分析统计方法进行了比较。给出了自回归复合向量随机过程表示中相关函数的表达式、自回归模型的参数计算和参数功率谱密度估计。本文提出的信号分析方法能够获得传统统计分析方法难以获得的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信