Carl Friedrich Bolz-Tereick, Darya Kurilova, L. Tratt
{"title":"Making an Embedded DBMS JIT-friendly","authors":"Carl Friedrich Bolz-Tereick, Darya Kurilova, L. Tratt","doi":"10.4230/LIPIcs.ECOOP.2016.4","DOIUrl":null,"url":null,"abstract":"While database management systems (DBMSs) are highly optimized, interactions across the boundary between the programming language (PL) and the DBMS are costly, even for in-process embedded DBMSs. In this paper, we show that programs that interact with the popular embedded DBMS SQLite can be significantly optimized - by a factor of 3.4 in our benchmarks - by inlining across the PL / DBMS boundary. We achieved this speed-up by replacing parts of SQLite's C interpreter with RPython code and composing the resulting meta-tracing virtual machine (VM) - called SQPyte - with the PyPy VM. SQPyte does not compromise stand-alone SQL performance and is 2.2% faster than SQLite on the widely used TPC-H benchmark suite.","PeriodicalId":172012,"journal":{"name":"European Conference on Object-Oriented Programming","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Object-Oriented Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ECOOP.2016.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
While database management systems (DBMSs) are highly optimized, interactions across the boundary between the programming language (PL) and the DBMS are costly, even for in-process embedded DBMSs. In this paper, we show that programs that interact with the popular embedded DBMS SQLite can be significantly optimized - by a factor of 3.4 in our benchmarks - by inlining across the PL / DBMS boundary. We achieved this speed-up by replacing parts of SQLite's C interpreter with RPython code and composing the resulting meta-tracing virtual machine (VM) - called SQPyte - with the PyPy VM. SQPyte does not compromise stand-alone SQL performance and is 2.2% faster than SQLite on the widely used TPC-H benchmark suite.