A Self Adaptive FCM Cluster Forests Based Feature Selection

Ines Lahmar, A. Zaier, Mohamed Yahia, R. Bouallègue
{"title":"A Self Adaptive FCM Cluster Forests Based Feature Selection","authors":"Ines Lahmar, A. Zaier, Mohamed Yahia, R. Bouallègue","doi":"10.1109/mms48040.2019.9157269","DOIUrl":null,"url":null,"abstract":"Ensemble clustering refers to combine many clustering methods to produce better results. In this context, we propose a new clustering ensemble method inspired from cluster forests (CF) based Self-Adaptive Fuzzy C-Means (SAFCM) method. Firstly, unsupervised feature selection methodology based on the building of best variables on simulated datasets. Next, we ameliorate the CF algorithm with the integration of SAFCM to find also the best number of K groups. Finally, the modified version normalized cuts spectral clustering (Ncut) is applied to general grouping. The proposed algorithm was tested on datasets from UCI Machine Learning Repository. The experimental results indicate that our proposed method outperforms both different clustering algorithms in terms of clustering quality.","PeriodicalId":373813,"journal":{"name":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mms48040.2019.9157269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ensemble clustering refers to combine many clustering methods to produce better results. In this context, we propose a new clustering ensemble method inspired from cluster forests (CF) based Self-Adaptive Fuzzy C-Means (SAFCM) method. Firstly, unsupervised feature selection methodology based on the building of best variables on simulated datasets. Next, we ameliorate the CF algorithm with the integration of SAFCM to find also the best number of K groups. Finally, the modified version normalized cuts spectral clustering (Ncut) is applied to general grouping. The proposed algorithm was tested on datasets from UCI Machine Learning Repository. The experimental results indicate that our proposed method outperforms both different clustering algorithms in terms of clustering quality.
基于聚类森林的自适应FCM特征选择
集成聚类是指将多种聚类方法结合在一起以获得更好的聚类结果。在此背景下,我们提出了一种新的基于聚类森林(CF)的自适应模糊c均值(SAFCM)聚类集成方法。首先,在模拟数据集上建立基于最佳变量的无监督特征选择方法。接下来,我们利用SAFCM的集成对CF算法进行改进,以找到K组的最佳数量。最后,将改进的归一化切割谱聚类(Ncut)应用于一般分组。在UCI机器学习库的数据集上对该算法进行了测试。实验结果表明,本文提出的方法在聚类质量方面优于两种不同的聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信