DAH: Domain Adapted Deep Image Hashing

Pei-Jung Lu, Pao-Yun Ma, Ying-Ying Chang, Mei-Chen Yeh
{"title":"DAH: Domain Adapted Deep Image Hashing","authors":"Pei-Jung Lu, Pao-Yun Ma, Ying-Ying Chang, Mei-Chen Yeh","doi":"10.1109/ISPACS51563.2021.9651027","DOIUrl":null,"url":null,"abstract":"With abundant labeled data, deep hashing methods have shown great success in image retrieval. However, these methods are often less powerful when applied to novel datasets. In this paper, we apply unsupervised domain adaptation techniques to improve a state-of-the-art deep hashing method, used in a cross-domain scenario where the model is trained with labeled source data and is evaluated with target data. Experiments show that the generalization capability of a supervised hashing method can be improved by the applied domain adaptation techniques.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With abundant labeled data, deep hashing methods have shown great success in image retrieval. However, these methods are often less powerful when applied to novel datasets. In this paper, we apply unsupervised domain adaptation techniques to improve a state-of-the-art deep hashing method, used in a cross-domain scenario where the model is trained with labeled source data and is evaluated with target data. Experiments show that the generalization capability of a supervised hashing method can be improved by the applied domain adaptation techniques.
DAH:域适应深度图像哈希
由于具有丰富的标记数据,深度哈希方法在图像检索中取得了巨大的成功。然而,当应用于新的数据集时,这些方法往往不那么强大。在本文中,我们应用无监督域自适应技术来改进最先进的深度哈希方法,该方法用于跨域场景,其中模型使用标记的源数据进行训练,并使用目标数据进行评估。实验表明,应用领域自适应技术可以提高监督哈希算法的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信