Mean shift based algorithm for mammographic breast mass detection

Farhang Sahba, A. Venetsanopoulos
{"title":"Mean shift based algorithm for mammographic breast mass detection","authors":"Farhang Sahba, A. Venetsanopoulos","doi":"10.1109/ICIP.2010.5652047","DOIUrl":null,"url":null,"abstract":"This paper presents a novel scheme for mass detection in mammography images. In this method, a mean shift-based algorithm is used to cluster pixels in the image. The extraction of the breast border is the first step. Image pixels are then clustered using a mean shift algorithm that employs intensity information to extract a set of high density points in the feature space. This is followed by further stages involving mode fusion. Due to its non-parametric nature, mean shift algorithm can work effectively with non-convex regions resulting in better candidates for a reliable segmentation. The proposed method has been validated on standard datasets and the results show that this method can detect masses in mammography images, making it useful for breast cancer detection systems.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5652047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a novel scheme for mass detection in mammography images. In this method, a mean shift-based algorithm is used to cluster pixels in the image. The extraction of the breast border is the first step. Image pixels are then clustered using a mean shift algorithm that employs intensity information to extract a set of high density points in the feature space. This is followed by further stages involving mode fusion. Due to its non-parametric nature, mean shift algorithm can work effectively with non-convex regions resulting in better candidates for a reliable segmentation. The proposed method has been validated on standard datasets and the results show that this method can detect masses in mammography images, making it useful for breast cancer detection systems.
基于均值移位的乳腺肿块检测算法
本文提出了一种新的乳房x线摄影图像质量检测方案。在该方法中,使用基于均值偏移的算法对图像中的像素进行聚类。乳房边界的提取是第一步。然后使用均值移位算法对图像像素进行聚类,该算法利用强度信息在特征空间中提取一组高密度点。接下来是涉及模式融合的进一步阶段。由于其非参数性质,均值移位算法可以有效地处理非凸区域,从而产生更好的可靠分割候选者。该方法已在标准数据集上进行了验证,结果表明该方法可以检测乳房x线摄影图像中的肿块,为乳腺癌检测系统提供了有用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信