Human Face Sentiment Classification Using Synthetic Sentiment Images with Deep Convolutional Neural Networks

Chen-Chun Huang, Yi-Leh Wu, Cheng-Yuan Tang
{"title":"Human Face Sentiment Classification Using Synthetic Sentiment Images with Deep Convolutional Neural Networks","authors":"Chen-Chun Huang, Yi-Leh Wu, Cheng-Yuan Tang","doi":"10.1109/ICMLC48188.2019.8949240","DOIUrl":null,"url":null,"abstract":"Image is one of the most important ways for users to express their emotions on social networks. In this paper, we use the deep convolutional neural networks to solve the problem of image sentiment analysis from visual content. Because training a neural network requires a large number of data sets to provide good training performance, we cannot obtain such a real human emotion training set, because emotions are subjective, and multiple people need to provide annotations for the images, which requires a lot of manpower. This study proposes to incorporate synthetic face images into the training set to substantially increase the size of the training set. We use only synthetic face images, real facial images, and mixtures of synthetic and real facial images in the training set. Our experiments show that by using only 4026 real images, where each image is supplemented by the synthetic image to the same data set size (Anger: 1063 + 937 true, Disgust: 1857 + 143 true, Fear: 1802 + 198 true, Happy: 2000 true, Sad: 1252 + 748 true) total of 10,000 images, can reach 87.79%, 74.19%, 86.99%, 79.80% average testing accuracy in each testing set in human face sentiment classification.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image is one of the most important ways for users to express their emotions on social networks. In this paper, we use the deep convolutional neural networks to solve the problem of image sentiment analysis from visual content. Because training a neural network requires a large number of data sets to provide good training performance, we cannot obtain such a real human emotion training set, because emotions are subjective, and multiple people need to provide annotations for the images, which requires a lot of manpower. This study proposes to incorporate synthetic face images into the training set to substantially increase the size of the training set. We use only synthetic face images, real facial images, and mixtures of synthetic and real facial images in the training set. Our experiments show that by using only 4026 real images, where each image is supplemented by the synthetic image to the same data set size (Anger: 1063 + 937 true, Disgust: 1857 + 143 true, Fear: 1802 + 198 true, Happy: 2000 true, Sad: 1252 + 748 true) total of 10,000 images, can reach 87.79%, 74.19%, 86.99%, 79.80% average testing accuracy in each testing set in human face sentiment classification.
基于深度卷积神经网络合成情感图像的人脸情感分类
图片是用户在社交网络上表达情感最重要的方式之一。在本文中,我们使用深度卷积神经网络来解决视觉内容的图像情感分析问题。因为训练一个神经网络需要大量的数据集才能提供良好的训练性能,我们无法获得这样一个真实的人类情感训练集,因为情绪是主观的,需要多个人对图像提供注释,这需要大量的人力。本研究提出将合成人脸图像纳入训练集,以大幅增加训练集的规模。我们在训练集中只使用合成人脸图像、真实人脸图像以及合成人脸图像和真实人脸图像的混合图像。我们的实验表明,仅使用4026张真实图像,其中每张图像由合成图像补充到相同的数据集大小(愤怒:1063 + 937 true,厌恶:1857 + 143 true,恐惧:1802 + 198 true,快乐:2000 true,悲伤:1252 + 748 true)共10,000张图像,人脸情感分类中每个测试集的平均测试准确率可以达到87.79%,74.19%,86.99%,79.80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信