{"title":"Search-Based Migration of Model Variants to Software Product Line Architectures","authors":"W. K. Assunção","doi":"10.1109/ICSE.2015.286","DOIUrl":null,"url":null,"abstract":"Software Product Lines (SPLs) are families of related software systems developed for specific market segments or domains. Commonly, SPLs emerge from sets of existing variants when their individual maintenance becomes infeasible. However, current approaches for SPL migration do not support design models, are partially automated, or do not reflect constraints from SPL domains. To tackle these limitations, the goal of this doctoral research plan is to propose an automated approach to the SPL migration process at the design level. This approach consists of three phases: detection, analysis and transformation. It uses as input the class diagrams and lists of features for each system variant, and relies on search-based algorithms to create a product line architecture that best captures the variability present in the variants. Our expected contribution is to support the adoption of SPL practices in companies that face the scenario of migrating variants to SPLs.","PeriodicalId":330487,"journal":{"name":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2015.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Software Product Lines (SPLs) are families of related software systems developed for specific market segments or domains. Commonly, SPLs emerge from sets of existing variants when their individual maintenance becomes infeasible. However, current approaches for SPL migration do not support design models, are partially automated, or do not reflect constraints from SPL domains. To tackle these limitations, the goal of this doctoral research plan is to propose an automated approach to the SPL migration process at the design level. This approach consists of three phases: detection, analysis and transformation. It uses as input the class diagrams and lists of features for each system variant, and relies on search-based algorithms to create a product line architecture that best captures the variability present in the variants. Our expected contribution is to support the adoption of SPL practices in companies that face the scenario of migrating variants to SPLs.