Face recognition using voting technique for the Gabor and LDP features

I. Dagher, Jamal Hassanieh, Ahmad Younes
{"title":"Face recognition using voting technique for the Gabor and LDP features","authors":"I. Dagher, Jamal Hassanieh, Ahmad Younes","doi":"10.1109/IJCNN.2013.6707094","DOIUrl":null,"url":null,"abstract":"Face recognition can be described by a sophisticated mathematical representation and matching procedures. In this paper, Local Derivative Pattern (LDP) descriptors along with the Gabor feature extraction technique were used to achieve highest percentage of recognition possible. A robust comparison method, the Chi Square Distance, was used as a matching algorithm. Four databases involving different image capturing conditions: positioning, illumination and expressions were used. The best results were obtained after applying a voting technique to the Gabor and the LDP features.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6707094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Face recognition can be described by a sophisticated mathematical representation and matching procedures. In this paper, Local Derivative Pattern (LDP) descriptors along with the Gabor feature extraction technique were used to achieve highest percentage of recognition possible. A robust comparison method, the Chi Square Distance, was used as a matching algorithm. Four databases involving different image capturing conditions: positioning, illumination and expressions were used. The best results were obtained after applying a voting technique to the Gabor and the LDP features.
人脸识别采用投票技术进行Gabor和LDP的特征分析
人脸识别可以通过复杂的数学表示和匹配程序来描述。在本文中,使用局部导数模式(LDP)描述符和Gabor特征提取技术来实现最高的识别率。一种稳健的比较方法,卡方距离,被用作匹配算法。使用了定位、光照和表情四种不同图像捕获条件的数据库。将投票技术应用于Gabor和LDP的特征后,获得了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信