Event Attention Network for Stock Trend Prediction

Hongyu Jiang, Chunyang Ye, Shanyan Lai, Hui Zhou
{"title":"Event Attention Network for Stock Trend Prediction","authors":"Hongyu Jiang, Chunyang Ye, Shanyan Lai, Hui Zhou","doi":"10.1109/ICSS53362.2021.00019","DOIUrl":null,"url":null,"abstract":"Different news events have different effects on stock price changes. If they are simply fed to the neural network for prediction, the accuracy will be affected. We propose a method to predict stock price trend based on time series news information. First, we extract events from news text and represent them as dense vectors by event embedding technique. Further-more, we employ attention mechanism to figure out event is the main cause of the price fluctuation. Then, we use a Gated Recurrent Unit to model the influence of events on stock market. Experimental results show that our model achieve a certain improvement on S&P500 index compared to baseline methods.","PeriodicalId":284026,"journal":{"name":"2021 International Conference on Service Science (ICSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Service Science (ICSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSS53362.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Different news events have different effects on stock price changes. If they are simply fed to the neural network for prediction, the accuracy will be affected. We propose a method to predict stock price trend based on time series news information. First, we extract events from news text and represent them as dense vectors by event embedding technique. Further-more, we employ attention mechanism to figure out event is the main cause of the price fluctuation. Then, we use a Gated Recurrent Unit to model the influence of events on stock market. Experimental results show that our model achieve a certain improvement on S&P500 index compared to baseline methods.
股票趋势预测的事件关注网络
不同的新闻事件对股价变化的影响不同。如果简单地将其输入神经网络进行预测,则会影响预测的准确性。提出了一种基于时间序列新闻信息的股票价格趋势预测方法。首先,从新闻文本中提取事件,并通过事件嵌入技术将其表示为密集向量。此外,我们运用注意机制找出事件是价格波动的主要原因。然后,我们使用一个门控循环单元来模拟事件对股票市场的影响。实验结果表明,与基准方法相比,我们的模型在标准普尔500指数上取得了一定的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信