Model order selection for multidimensional innovations based detection in airborne radar

J. Castro, J. LeBlanc
{"title":"Model order selection for multidimensional innovations based detection in airborne radar","authors":"J. Castro, J. LeBlanc","doi":"10.1109/NRC.1998.677991","DOIUrl":null,"url":null,"abstract":"This paper investigates the model order selection problem for use with the multidimensional autoregressive (MAR) process in airborne radar detection processing which uses an innovations based detection algorithm (IBDA). Results indicate that a low order model should be used to accurately portray the return signal spectrum. Specifically, this paper investigates the use of the Akaike (1971) information criterion for model order selection. Examples are included for physically modeled data sets as well as actual radar data sets.","PeriodicalId":432418,"journal":{"name":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","volume":"128 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1998.677991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper investigates the model order selection problem for use with the multidimensional autoregressive (MAR) process in airborne radar detection processing which uses an innovations based detection algorithm (IBDA). Results indicate that a low order model should be used to accurately portray the return signal spectrum. Specifically, this paper investigates the use of the Akaike (1971) information criterion for model order selection. Examples are included for physically modeled data sets as well as actual radar data sets.
基于机载雷达的多维创新检测模型阶数选择
本文研究了基于创新检测算法(IBDA)的多维自回归(MAR)过程在机载雷达检测处理中的模型阶数选择问题。结果表明,为了准确地描绘回波信号频谱,应采用低阶模型。具体而言,本文研究了Akaike(1971)信息准则在模型顺序选择中的应用。示例包括物理建模数据集以及实际雷达数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信