O. Purcaru, Alexandra Costachi, C. Cioc, A. Buteică, A. Dricu
{"title":"IRON OXIDE MAGNETIC NANOPARTICLES AS DRUG DELIVERY SYSTEMS FOR BRAIN CANCER TREATMENT","authors":"O. Purcaru, Alexandra Costachi, C. Cioc, A. Buteică, A. Dricu","doi":"10.52701/MONC.2021.V2I1.30","DOIUrl":null,"url":null,"abstract":"Nanotechnology offers a new horizon for cancer drug administration and systemic safety of oncological treatments. Compared with conventional pharmaceutical forms, nanoparticles (NPs) have many advantages such as larger surface, ability to adsorb and targeted delivery of different types of drugs, providing decreased side effects and a patient customed approach in cancer treatment. Due to their diverse chemical composition, NPs offer the possibility of developing innovative therapies, which may be also applied in glioblastoma treatment. Fe3O4 magnetic nanoparticles (MNPs) have been previously used in cancer treatment, as targeted drug delivery systems. Helianthin is an azo dye compound that we found to induce cell death in high grade glioma (HGG) cells. In this study, we analyzed the in vitro effect of MNPs loaded with Helianthin (HeMNPs) on a glioblastoma cell line (GB2B).","PeriodicalId":299951,"journal":{"name":"Medico Oncology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medico Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52701/MONC.2021.V2I1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nanotechnology offers a new horizon for cancer drug administration and systemic safety of oncological treatments. Compared with conventional pharmaceutical forms, nanoparticles (NPs) have many advantages such as larger surface, ability to adsorb and targeted delivery of different types of drugs, providing decreased side effects and a patient customed approach in cancer treatment. Due to their diverse chemical composition, NPs offer the possibility of developing innovative therapies, which may be also applied in glioblastoma treatment. Fe3O4 magnetic nanoparticles (MNPs) have been previously used in cancer treatment, as targeted drug delivery systems. Helianthin is an azo dye compound that we found to induce cell death in high grade glioma (HGG) cells. In this study, we analyzed the in vitro effect of MNPs loaded with Helianthin (HeMNPs) on a glioblastoma cell line (GB2B).