Comparative Study of Mutation Operators on the Behavior of Genetic Algorithms Applied to Non-deterministic Polynomial (NP) Problems

Basima Hani F. Hasan, Moutaz Saleh Mustafa
{"title":"Comparative Study of Mutation Operators on the Behavior of Genetic Algorithms Applied to Non-deterministic Polynomial (NP) Problems","authors":"Basima Hani F. Hasan, Moutaz Saleh Mustafa","doi":"10.1109/ISMS.2011.11","DOIUrl":null,"url":null,"abstract":"Genetic Algorithms (GAs) are powerful general-purpose optimization search algorithms based upon the principles of evolution observed in nature. Mutation operator is one of the GA operators that used to produce new chromosomes or modify some features of it depending on some small probability value. The objective of this operator is to prevent falling of all solutions in population into a local optimum of solved problem. This paper applies several mutation methods to different non-deterministic polynomial (NP) hard problems and compares the results. The problems that will be introduced in this paper are: traveling salesman problem (TSP), 0/1 Knapsack problem, and Shubert function.","PeriodicalId":193599,"journal":{"name":"2011 Second International Conference on Intelligent Systems, Modelling and Simulation","volume":"28 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Second International Conference on Intelligent Systems, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMS.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Genetic Algorithms (GAs) are powerful general-purpose optimization search algorithms based upon the principles of evolution observed in nature. Mutation operator is one of the GA operators that used to produce new chromosomes or modify some features of it depending on some small probability value. The objective of this operator is to prevent falling of all solutions in population into a local optimum of solved problem. This paper applies several mutation methods to different non-deterministic polynomial (NP) hard problems and compares the results. The problems that will be introduced in this paper are: traveling salesman problem (TSP), 0/1 Knapsack problem, and Shubert function.
变异算子对非确定性多项式(NP)问题遗传算法行为的比较研究
遗传算法(GAs)是一种强大的通用优化搜索算法,基于自然界中观察到的进化原理。突变算子是一种遗传算子,用来产生新的染色体或根据某个小概率值修改染色体的某些特征。该算子的目标是防止种群中的所有解落入已解问题的局部最优。本文将几种变异方法应用于不同的非确定性多项式问题,并对结果进行了比较。本文将引入的问题有:旅行商问题(TSP)、0/1背包问题和舒伯特函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信