N. Manavizadeh, M. Pourfath, F. Raissi, E. Asl-Soleimani
{"title":"A comprehensive study of nanoscale Field Effect Diodes","authors":"N. Manavizadeh, M. Pourfath, F. Raissi, E. Asl-Soleimani","doi":"10.1109/ESIME.2011.5765817","DOIUrl":null,"url":null,"abstract":"The performance of nanoscale Field Effect Diode as a function of the doping concentration and the gate voltage is investigated. Our numerical results show that the I<inf>on</inf>/I<inf>off</inf> ratio which is a significant parameter in digital application can be varied from 10<sup>1</sup> to 10<sup>4</sup> as the doping concentration of source/drain regions increased from 10<sup>16</sup> to 10<sup>21</sup>cm<sup>−3</sup>. The figures of merit including intrinsic gate delay time and energy-delay product have been studied for the field effect diodes which are interesting candidates for future logic application.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The performance of nanoscale Field Effect Diode as a function of the doping concentration and the gate voltage is investigated. Our numerical results show that the Ion/Ioff ratio which is a significant parameter in digital application can be varied from 101 to 104 as the doping concentration of source/drain regions increased from 1016 to 1021cm−3. The figures of merit including intrinsic gate delay time and energy-delay product have been studied for the field effect diodes which are interesting candidates for future logic application.