César Albusac, L. M. D. Campos, J. M. Fernández-Luna, J. Huete
{"title":"Content-based recommendation for Academic Expert finding","authors":"César Albusac, L. M. D. Campos, J. M. Fernández-Luna, J. Huete","doi":"10.1145/3230599.3230607","DOIUrl":null,"url":null,"abstract":"Nowadays it is more and more frequent that Web users search for professionals in order to find people who can help solve any problem in a given field. This is call expert finding. A particular case is when users are interested in scientific researchers. The associated problem is to get, given a query that expresses a topic of interest for a user, a set of researchers who are expert on it. One of the difficulties to tackle the problem is to indentify the topics in which a professional is expert. In this paper, we face this problem from a content-based recommendatation perspective and we present a method where, starting from the articles published by each researcher, and a query, the expert researchers are obtained. We also present a new document collection, called PMSC-UGR, specifically designed for the evaluation in the field of expert finding and document filtering","PeriodicalId":448209,"journal":{"name":"Proceedings of the 5th Spanish Conference on Information Retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Spanish Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230599.3230607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays it is more and more frequent that Web users search for professionals in order to find people who can help solve any problem in a given field. This is call expert finding. A particular case is when users are interested in scientific researchers. The associated problem is to get, given a query that expresses a topic of interest for a user, a set of researchers who are expert on it. One of the difficulties to tackle the problem is to indentify the topics in which a professional is expert. In this paper, we face this problem from a content-based recommendatation perspective and we present a method where, starting from the articles published by each researcher, and a query, the expert researchers are obtained. We also present a new document collection, called PMSC-UGR, specifically designed for the evaluation in the field of expert finding and document filtering