Cai-Ming Wang, Xian Jiang, Yufei Wang, Yawen Tang, Juan Zhou, G. Fu
{"title":"Recent advances in nonmetallic modulation of palladium-based electrocatalysts","authors":"Cai-Ming Wang, Xian Jiang, Yufei Wang, Yawen Tang, Juan Zhou, G. Fu","doi":"10.20517/cs.2022.34","DOIUrl":null,"url":null,"abstract":"Modulating the electrocatalytic performance of Palladium (Pd) with nonmetallic elements (e.g., H, B, C, N, O, P and S) has gained ever-increasing attention since their introduction has been proven to effectively modulate the 3d-electronic configuration and subsurface properties of Pd. In this review, the most advanced nonmetal-modified Pd-based catalysts are classified according to the different doped atoms (i.e., hydrides, borides, carbides, nitrides, oxides, phosphides and sulfides) and critically reviewed to emphasize the roles of nonmetallic elements doping on various electrocatalytic reactions. In each section, the synthetic strategies developed to incorporate nonmetals are discussed in detail. Furthermore, the optimized approaches of nonmetals-doped Pd-based catalysts and corresponding electrocatalytic enhancement mechanisms were also discussed clearly. Finally, the current challenges and future perspectives regarding nonmetal-modified Pd-based nanocatalysts are also outlined.","PeriodicalId":381136,"journal":{"name":"Chemical Synthesis","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/cs.2022.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Modulating the electrocatalytic performance of Palladium (Pd) with nonmetallic elements (e.g., H, B, C, N, O, P and S) has gained ever-increasing attention since their introduction has been proven to effectively modulate the 3d-electronic configuration and subsurface properties of Pd. In this review, the most advanced nonmetal-modified Pd-based catalysts are classified according to the different doped atoms (i.e., hydrides, borides, carbides, nitrides, oxides, phosphides and sulfides) and critically reviewed to emphasize the roles of nonmetallic elements doping on various electrocatalytic reactions. In each section, the synthetic strategies developed to incorporate nonmetals are discussed in detail. Furthermore, the optimized approaches of nonmetals-doped Pd-based catalysts and corresponding electrocatalytic enhancement mechanisms were also discussed clearly. Finally, the current challenges and future perspectives regarding nonmetal-modified Pd-based nanocatalysts are also outlined.