Graph-based diagnosis in software-defined infrastructure

J. Wahba, Hazem M. Soliman, H. Bannazadeh, A. Leon-Garcia
{"title":"Graph-based diagnosis in software-defined infrastructure","authors":"J. Wahba, Hazem M. Soliman, H. Bannazadeh, A. Leon-Garcia","doi":"10.1109/CNSM.2016.7818425","DOIUrl":null,"url":null,"abstract":"Performing system diagnosis is a critical task in modern datacenters. Investigating individual resource behavior may not be efficient in detecting abnormal behavior in large and complex datacenters. In this paper, we propose a scalable graph based diagnosis framework to detect system anomalies in Software-Defined Infrastructure running in SAVI testbed. We have leveraged Graph Mining and Machine Learning techniques in our approach in order to detect different kinds of anomalies. We have experimentally tested our framework on several use cases: Webserver-Database workload pattern, bandwidth throttling between a pair of VMs, denial-of-service (DoS) attack on a webserver and Spark Job failure. Our framework was able to detect the aforementioned anomalies accurately.","PeriodicalId":334604,"journal":{"name":"2016 12th International Conference on Network and Service Management (CNSM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSM.2016.7818425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Performing system diagnosis is a critical task in modern datacenters. Investigating individual resource behavior may not be efficient in detecting abnormal behavior in large and complex datacenters. In this paper, we propose a scalable graph based diagnosis framework to detect system anomalies in Software-Defined Infrastructure running in SAVI testbed. We have leveraged Graph Mining and Machine Learning techniques in our approach in order to detect different kinds of anomalies. We have experimentally tested our framework on several use cases: Webserver-Database workload pattern, bandwidth throttling between a pair of VMs, denial-of-service (DoS) attack on a webserver and Spark Job failure. Our framework was able to detect the aforementioned anomalies accurately.
软件定义基础架构中基于图的诊断
系统诊断是现代数据中心的一项重要任务。在大型和复杂的数据中心中,调查单个资源行为可能无法有效地检测异常行为。在本文中,我们提出了一个可扩展的基于图的诊断框架来检测运行在SAVI测试平台上的软件定义基础设施中的系统异常。我们在我们的方法中利用了图挖掘和机器学习技术来检测不同类型的异常。我们已经在几个用例中对我们的框架进行了实验测试:webserver - database工作负载模式、一对虚拟机之间的带宽限制、对web服务器的拒绝服务(DoS)攻击和Spark Job失败。我们的框架能够准确地检测到上述异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信