Matrix factorizations for parallel integer transforms

Yiyuan She, Pengwei Hao, Y. Paker
{"title":"Matrix factorizations for parallel integer transforms","authors":"Yiyuan She, Pengwei Hao, Y. Paker","doi":"10.1109/ISPAN.2004.1300489","DOIUrl":null,"url":null,"abstract":"Integer mapping is critical for lossless source coding and the techniques have been used for image compression in the new international image compression standard, JPEG 2000. In this paper, from block factorizations for any nonsingular transform matrix, we introduce two types of parallel elementary reversible matrix (PERM) factorizations which are helpful for the parallelization of perfectly reversible integer transforms. With improved degree of parallelism (DOP) and parallel performance, the cost of multiplication and addition can be respectively reduced to O(logN) and O(log2N) for an N-by-N transform matrix. These make PERM factorizations an effective means of developing parallel integer transforms for large matrices. Besides, we also present a scheme to block the matrix and allocate the load of processors for efficient transformation.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Integer mapping is critical for lossless source coding and the techniques have been used for image compression in the new international image compression standard, JPEG 2000. In this paper, from block factorizations for any nonsingular transform matrix, we introduce two types of parallel elementary reversible matrix (PERM) factorizations which are helpful for the parallelization of perfectly reversible integer transforms. With improved degree of parallelism (DOP) and parallel performance, the cost of multiplication and addition can be respectively reduced to O(logN) and O(log2N) for an N-by-N transform matrix. These make PERM factorizations an effective means of developing parallel integer transforms for large matrices. Besides, we also present a scheme to block the matrix and allocate the load of processors for efficient transformation.
并行整数变换的矩阵分解
整数映射对于无损源编码是至关重要的,并且在新的国际图像压缩标准JPEG 2000中已将该技术用于图像压缩。本文从任意非奇异变换矩阵的分块分解出发,引入了两种有助于完全可逆整数变换并行化的并行初等可逆矩阵分解。通过改进并行度(DOP)和并行性能,对于n × n变换矩阵,乘法和加法的代价可以分别降低到O(logN)和O(log2N)。这使得PERM分解成为求解大矩阵并行整数变换的有效方法。此外,我们还提出了一种阻塞矩阵和分配处理器负载以实现高效变换的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信