{"title":"Teaching agents with human feedback: a demonstration of the TAMER framework","authors":"W. B. Knox, P. Stone, C. Breazeal","doi":"10.1145/2451176.2451201","DOIUrl":null,"url":null,"abstract":"Incorporating human interaction into agent learning yields two crucial benefits. First, human knowledge can greatly improve the speed and final result of learning compared to pure trial-and-error approaches like reinforcement learning. And second, human users are empowered to designate \"correct\" behavior. In this abstract, we present research on a system for learning from human interaction - the TAMER framework - then point to extensions to TAMER, and finally describe a demonstration of these systems.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Incorporating human interaction into agent learning yields two crucial benefits. First, human knowledge can greatly improve the speed and final result of learning compared to pure trial-and-error approaches like reinforcement learning. And second, human users are empowered to designate "correct" behavior. In this abstract, we present research on a system for learning from human interaction - the TAMER framework - then point to extensions to TAMER, and finally describe a demonstration of these systems.