Tobias Blass, Daniel Casini, S. Bozhko, Björn B. Brandenburg
{"title":"A ROS 2 Response-Time Analysis Exploiting Starvation Freedom and Execution-Time Variance","authors":"Tobias Blass, Daniel Casini, S. Bozhko, Björn B. Brandenburg","doi":"10.1109/rtss52674.2021.00016","DOIUrl":null,"url":null,"abstract":"Robots are commonly subject to real-time constraints. To ensure that such constraints are met, recent work has analyzed the response times of processing chains under ROS 2, a popular robotics framework. However, prior work supports only scalar worst-case execution time bounds and does not exploit that the ROS 2 scheduling mechanism is starvation-free. This paper proposes a novel response-time analysis for ROS 2 processing chains that accounts for both the high execution-time variance typically encountered in robotics workloads and the starvation freedom of the default ROS 2 callback scheduler. Experimental results from both synthetic callback graphs and a real ROS 2 workload empirically show the proposed analysis to be much more accurate (often by a factor of 2x or more).","PeriodicalId":102789,"journal":{"name":"2021 IEEE Real-Time Systems Symposium (RTSS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtss52674.2021.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Robots are commonly subject to real-time constraints. To ensure that such constraints are met, recent work has analyzed the response times of processing chains under ROS 2, a popular robotics framework. However, prior work supports only scalar worst-case execution time bounds and does not exploit that the ROS 2 scheduling mechanism is starvation-free. This paper proposes a novel response-time analysis for ROS 2 processing chains that accounts for both the high execution-time variance typically encountered in robotics workloads and the starvation freedom of the default ROS 2 callback scheduler. Experimental results from both synthetic callback graphs and a real ROS 2 workload empirically show the proposed analysis to be much more accurate (often by a factor of 2x or more).