{"title":"PATRIoTA: A Similarity-based IoT Malware Detection Method Robust Against Adversarial Samples","authors":"J. Sándor, Roland Nagy, L. Buttyán","doi":"10.1109/EDGE60047.2023.00057","DOIUrl":null,"url":null,"abstract":"Detecting malware targeting IoT devices has became an important challenge with the recent emergence of IoT botnets. Gateways at the edge between the Internet and IoT devices deployed in the field are particularly well-positioned for the task of malware detection, as malware typically spreads over the Internet and resource-constrained field devices may not have the means to protect themselves. Hence, we believe that, among other things, edge intelligence should also include effective and efficient IoT malware detection. A recently proposed similarity-based IoT malware detection method, called SIMBIoTA, would be suitable in this context, but its robustness against adversarial malware samples has been shown to be rather weak. In this paper, we propose PATRIoTA, a similarity-based IoT malware detection method inspired by SIMBIoTA, but being significantly more robust than SIMBIoTA is. We describe the operation of PATRIoTA, and compare its malware detection performance and robustness against adversarial samples to that of SIMBIoTA. We show that PATRIoTA outperforms SIMBIoTA with respect to both measures.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting malware targeting IoT devices has became an important challenge with the recent emergence of IoT botnets. Gateways at the edge between the Internet and IoT devices deployed in the field are particularly well-positioned for the task of malware detection, as malware typically spreads over the Internet and resource-constrained field devices may not have the means to protect themselves. Hence, we believe that, among other things, edge intelligence should also include effective and efficient IoT malware detection. A recently proposed similarity-based IoT malware detection method, called SIMBIoTA, would be suitable in this context, but its robustness against adversarial malware samples has been shown to be rather weak. In this paper, we propose PATRIoTA, a similarity-based IoT malware detection method inspired by SIMBIoTA, but being significantly more robust than SIMBIoTA is. We describe the operation of PATRIoTA, and compare its malware detection performance and robustness against adversarial samples to that of SIMBIoTA. We show that PATRIoTA outperforms SIMBIoTA with respect to both measures.