{"title":"Main beam jammer cancellation and target angle estimation with a polarization-agile monopulse antenna","authors":"C. R. Clark","doi":"10.1109/NRC.1989.47623","DOIUrl":null,"url":null,"abstract":"An alternative, more cost-effective approach to cancellation and angle estimation in airborne radars is proposed. A set of preformed, phase-steered, product-pattern monopulse beams are used to form adapted sum ( Sigma ) and difference ( Delta ) beams that yield undistorted target monopulse ratio estimates while nulling both main-beam and sidelobe ECM (electronic countermeasures). The authors consider three approaches to optimal weight calculation. The first is a straightforward sample-matrix-inversion algorithm, which maximizes the signal-to-noise ratio in a prespecified look direction or, equivalently, minimizes the adapted beam residue subject to a unity-gain constraint in the prespecified look direction. The other two approaches to adaptive weight optimization are based on finding the eigenvector with the minimum eigenvalue for modified versions of R (the sample covariance matrix). Results of algorithm performance analysis are presented. The bandwidth effects of phase-steered antennas on the main beam canceller are also discussed.<<ETX>>","PeriodicalId":167059,"journal":{"name":"Proceedings of the IEEE National Radar Conference","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE National Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1989.47623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
An alternative, more cost-effective approach to cancellation and angle estimation in airborne radars is proposed. A set of preformed, phase-steered, product-pattern monopulse beams are used to form adapted sum ( Sigma ) and difference ( Delta ) beams that yield undistorted target monopulse ratio estimates while nulling both main-beam and sidelobe ECM (electronic countermeasures). The authors consider three approaches to optimal weight calculation. The first is a straightforward sample-matrix-inversion algorithm, which maximizes the signal-to-noise ratio in a prespecified look direction or, equivalently, minimizes the adapted beam residue subject to a unity-gain constraint in the prespecified look direction. The other two approaches to adaptive weight optimization are based on finding the eigenvector with the minimum eigenvalue for modified versions of R (the sample covariance matrix). Results of algorithm performance analysis are presented. The bandwidth effects of phase-steered antennas on the main beam canceller are also discussed.<>