Direct Ego-Motion Estimation Using Normal Flows

Ding Yuan, Miao Liu, Hong Zhang
{"title":"Direct Ego-Motion Estimation Using Normal Flows","authors":"Ding Yuan, Miao Liu, Hong Zhang","doi":"10.1109/ACPR.2013.130","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel method that estimates the motion parameters of a monocular camera, which is under unconstrained movement. Different from the traditional works which tackle the problem by establishing motion correspondences, or by calculating optical flows within the image sequence, the proposed method estimates the motion parameters directly by using the information of spatio-temporal gradient of the image intensity. Hence, our method requires no specific assumptions about the captured scene, like it is smooth almost everywhere or it must contain distinct features etc. We have tested the methods on both synthetic image data and real image sequences. Experimental results show that the developed methods are effective in determining the camera motion parameters.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present a novel method that estimates the motion parameters of a monocular camera, which is under unconstrained movement. Different from the traditional works which tackle the problem by establishing motion correspondences, or by calculating optical flows within the image sequence, the proposed method estimates the motion parameters directly by using the information of spatio-temporal gradient of the image intensity. Hence, our method requires no specific assumptions about the captured scene, like it is smooth almost everywhere or it must contain distinct features etc. We have tested the methods on both synthetic image data and real image sequences. Experimental results show that the developed methods are effective in determining the camera motion parameters.
使用正常流的直接自我运动估计
本文提出了一种估计无约束运动单目摄像机运动参数的新方法。与传统的通过建立运动对应关系或计算图像序列内的光流来解决问题不同,该方法直接利用图像强度的时空梯度信息来估计运动参数。因此,我们的方法不需要对捕获的场景进行特定的假设,比如它几乎到处都是光滑的,或者它必须包含明显的特征等。我们已经在合成图像数据和真实图像序列上进行了测试。实验结果表明,所提出的方法在确定摄像机运动参数方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信