{"title":"On K* Search for Top-K Planning","authors":"Junkyu Lee, Michael Katz, Shirin Sohrabi","doi":"10.1609/socs.v16i1.27281","DOIUrl":null,"url":null,"abstract":"Finding multiple high-quality plans is essential in many planning applications, and top-k planning asks for finding the k best plans, naturally extending cost-optimal classical planning. Several attempts have been made to formulate top-k classical planning as a k-shortest paths finding problem and apply K* search, which alternates between A* and Eppstein's algorithm. However, earlier work had shortcomings, among which were failing to handle inconsistent heuristics and degraded performance in Eppstein's algorithm implementations. As a result, existing evaluation results severely underrate the performance of the K* based approach to top-k planning. In this paper, we present a new top-k planner based on a novel variant of K* search. We address the following three aspects. First, we show an alternative implementation of Eppstein's algorithm for classical planning, which resolves a major bottleneck in earlier attempts. Second, we present a new strategy for alternating A* and Eppstein's algorithm, that improves the performance of K* on the classical planning benchmarks. Last, we introduce a simple mitigation of the limitation of K* to tasks with a single goal state, allowing us to preserve heuristic informativeness in face of imposed task reformulation. Empirical evaluation results show that the proposed approach achieves the state-of-the-art performance on the classical planning benchmarks. The code is available at https://github.com/IBM/kstar.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Finding multiple high-quality plans is essential in many planning applications, and top-k planning asks for finding the k best plans, naturally extending cost-optimal classical planning. Several attempts have been made to formulate top-k classical planning as a k-shortest paths finding problem and apply K* search, which alternates between A* and Eppstein's algorithm. However, earlier work had shortcomings, among which were failing to handle inconsistent heuristics and degraded performance in Eppstein's algorithm implementations. As a result, existing evaluation results severely underrate the performance of the K* based approach to top-k planning. In this paper, we present a new top-k planner based on a novel variant of K* search. We address the following three aspects. First, we show an alternative implementation of Eppstein's algorithm for classical planning, which resolves a major bottleneck in earlier attempts. Second, we present a new strategy for alternating A* and Eppstein's algorithm, that improves the performance of K* on the classical planning benchmarks. Last, we introduce a simple mitigation of the limitation of K* to tasks with a single goal state, allowing us to preserve heuristic informativeness in face of imposed task reformulation. Empirical evaluation results show that the proposed approach achieves the state-of-the-art performance on the classical planning benchmarks. The code is available at https://github.com/IBM/kstar.