Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

Eunjin Oh, Seunghyeok Oh
{"title":"Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs","authors":"Eunjin Oh, Seunghyeok Oh","doi":"10.48550/arXiv.2306.16775","DOIUrl":null,"url":null,"abstract":"In this paper, we study the maximum clique problem on hyperbolic random graphs. A hyperbolic random graph is a mathematical model for analyzing scale-free networks since it effectively explains the power-law degree distribution of scale-free networks. We propose a simple algorithm for finding a maximum clique in hyperbolic random graph. We first analyze the running time of our algorithm theoretically. We can compute a maximum clique on a hyperbolic random graph $G$ in $O(m + n^{4.5(1-\\alpha)})$ expected time if a geometric representation is given or in $O(m + n^{6(1-\\alpha)})$ expected time if a geometric representation is not given, where $n$ and $m$ denote the numbers of vertices and edges of $G$, respectively, and $\\alpha$ denotes a parameter controlling the power-law exponent of the degree distribution of $G$. Also, we implemented and evaluated our algorithm empirically. Our algorithm outperforms the previous algorithm [BFK18] practically and theoretically. Beyond the hyperbolic random graphs, we have experiment on real-world networks. For most of instances, we get large cliques close to the optimum solutions efficiently.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.16775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the maximum clique problem on hyperbolic random graphs. A hyperbolic random graph is a mathematical model for analyzing scale-free networks since it effectively explains the power-law degree distribution of scale-free networks. We propose a simple algorithm for finding a maximum clique in hyperbolic random graph. We first analyze the running time of our algorithm theoretically. We can compute a maximum clique on a hyperbolic random graph $G$ in $O(m + n^{4.5(1-\alpha)})$ expected time if a geometric representation is given or in $O(m + n^{6(1-\alpha)})$ expected time if a geometric representation is not given, where $n$ and $m$ denote the numbers of vertices and edges of $G$, respectively, and $\alpha$ denotes a parameter controlling the power-law exponent of the degree distribution of $G$. Also, we implemented and evaluated our algorithm empirically. Our algorithm outperforms the previous algorithm [BFK18] practically and theoretically. Beyond the hyperbolic random graphs, we have experiment on real-world networks. For most of instances, we get large cliques close to the optimum solutions efficiently.
双曲型随机图中最大团的计算算法
本文研究了双曲型随机图上的最大团问题。双曲型随机图是一种分析无标度网络的数学模型,它能有效地解释无标度网络的幂律度分布。提出了一种求双曲型随机图中最大团的简单算法。首先从理论上分析了算法的运行时间。如果给定几何表示,我们可以在$O(m + n^{4.5(1-\alpha)})$期望时间内计算双曲随机图$G$上的最大团;如果没有给定几何表示,则可以在$O(m + n^{6(1-\alpha)})$期望时间内计算,其中$n$和$m$分别表示$G$的顶点数和边数,$\alpha$表示控制$G$度分布幂律指数的参数。此外,我们还对我们的算法进行了实践和评估。我们的算法在实践和理论上都优于先前的算法[BFK18]。除了双曲随机图,我们还在现实世界的网络上进行了实验。在大多数情况下,我们可以有效地得到接近最优解的大团。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信