Forecasting student achievement in MOOCs with natural language processing

Carly D. Robinson, M. Yeomans, J. Reich, Chris Hulleman, Hunter Gehlbach
{"title":"Forecasting student achievement in MOOCs with natural language processing","authors":"Carly D. Robinson, M. Yeomans, J. Reich, Chris Hulleman, Hunter Gehlbach","doi":"10.1145/2883851.2883932","DOIUrl":null,"url":null,"abstract":"Student intention and motivation are among the strongest predictors of persistence and completion in Massive Open Online Courses (MOOCs), but these factors are typically measured through fixed-response items that constrain student expression. We use natural language processing techniques to evaluate whether text analysis of open responses questions about motivation and utility value can offer additional capacity to predict persistence and completion over and above information obtained from fixed-response items. Compared to simple benchmarks based on demographics, we find that a machine learning prediction model can learn from unstructured text to predict which students will complete an online course. We show that the model performs well out-of-sample, compared to a standard array of demographics. These results demonstrate the potential for natural language processing to contribute to predicting student success in MOOCs and other forms of open online learning.","PeriodicalId":343844,"journal":{"name":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883851.2883932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

Student intention and motivation are among the strongest predictors of persistence and completion in Massive Open Online Courses (MOOCs), but these factors are typically measured through fixed-response items that constrain student expression. We use natural language processing techniques to evaluate whether text analysis of open responses questions about motivation and utility value can offer additional capacity to predict persistence and completion over and above information obtained from fixed-response items. Compared to simple benchmarks based on demographics, we find that a machine learning prediction model can learn from unstructured text to predict which students will complete an online course. We show that the model performs well out-of-sample, compared to a standard array of demographics. These results demonstrate the potential for natural language processing to contribute to predicting student success in MOOCs and other forms of open online learning.
用自然语言处理预测mooc学生成绩
在大规模在线开放课程(MOOCs)中,学生的意愿和动机是坚持和完成的最强预测因素之一,但这些因素通常是通过限制学生表达的固定回答项目来衡量的。我们使用自然语言处理技术来评估关于动机和效用价值的开放式回答问题的文本分析是否可以提供额外的能力来预测从固定回答项目获得的信息的持久性和完成性。与基于人口统计的简单基准相比,我们发现机器学习预测模型可以从非结构化文本中学习,以预测哪些学生将完成在线课程。我们表明,与标准的人口统计数据相比,该模型在样本外表现良好。这些结果表明,自然语言处理有助于预测学生在mooc和其他形式的开放式在线学习中的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信